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Background and objective: Causality defined by Granger in 1969 is a widely used concept, particularly 

in neuroscience and economics. As there is an increasing interest in nonlinear causality research, a 

Python package with a neural-network-based causality analysis approach was created. It allows perform- 

ing causality tests using neural networks based on Long Short-Term Memory (LSTM), Gated Recurrent 

Unit (GRU), or Multilayer Perceptron (MLP). The aim of this paper is to present the nonlinear method for 

causality analysis and the created Python package. 

Methods: The created functions with the autoregressive (AR) and Generalized Radial Basis Functions 

(GRBF) neural network models were tested on simulated signals in two cases: with nonlinear depen- 

dency and with absence of causality from Y to X signal. The train-test split (70/30) was used. Errors 

obtained on the test set were compared using the Wilcoxon signed-rank test to determine the presence 

of the causality. For the chosen model, the proposed method of study the change of causality over time 

was presented. 

Results: In the case when X was a polynomial of Y, nonlinear methods were able to detect the causality, 

while the AR model did not manage to indicate it. The best results (in terms of the prediction accuracy) 

were obtained for the MLP for the lag of 150 (MSE equal to 0.011, compared to 0.041 and 0.036 for AR 

and GRBF, respectively). When there was no causality between the signals, none of the proposed and AR 

models did indicate false causality, while it was detected by GRBF models in one case. Only the proposed 

models gave the expected results in each of the tested scenarios. 

Conclusions: The proposed method appeared to be superior to the compared methods. They were able to 

detect non-linear causality, make accurate forecasting and not indicate false causality. The created pack- 

age enables easy usage of neural networks to study the causal relationship between signals. The neural- 

networks-based approach is a suitable method that allows the detection of a nonlinear causal relation- 

ship, which cannot be detected by the classical Granger method. Unlike other similar tools, the package 

allows for the study of changes in causality over time. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

.1. Granger causality 

The causality concept, which is discussed in this paper was pre- 

ented by Sir Clive Granger in 1969 [1] . Nowadays it is widely used

n economics [2–5] and neuroscience [6–14] . Recently, there has 

lso been a growing interest in Granger causality in the field of 

hysiology, where it can be used for searching the cause of phe- 

omena and even as a physiological marker [15–20] . In this ap- 
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roach, a causal relationship (where the time series Y is the cause 

f the time series X, denoted by Y → X) occurs if the variance of the

rediction error of the Y based on the past of all available informa- 

ion (U) is statistically significantly smaller than the prediction er- 

or variance of the X based on the past of all available information 

xcept for the time series Y ( Eq. (1 )). In practice, some defined by

esearcher number of lag values of X and Y time series are treated 

s all available information, while past lags of X are treated as all 

vailable information except for Y. 

2 (X | U) < σ 2 (X | U − Y ) (1) 

To test hypotheses about causality 2 linear autoregressive mod- 

ls (AR) and covariance stationary time series X and Y are as- 

umed. The first model predicts the current value of time series 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Two cases of dependencies are indistinguishable for the two-way Granger 

causality analysis and in both cases, the result of the analysis would suggest the 

presence of causality presented in Diagram A. 
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 based only on p lagged values of X and Y ( Eq. (2 )), the second

ne predicts the current value of Y, based on the same values but 

ith different coefficients ( Eq. (3 )). In the equations shown below 

 are the regression coefficients and E are the regression errors. 

 ( t ) = 

p ∑ 

j=1 

A 11 , j X ( t − j ) + 

p ∑ 

j=1 

A 12 , j Y ( t − j ) + E 1 ( t ) (2) 

 ( t ) = 

p ∑ 

j=1 

A 21 , j X ( t − j ) + 

p ∑ 

j=1 

A 22 , j Y ( t − j ) + E 2 ( t ) (3) 

If in the first equation the variance of error E 1 is statistically 

ignificantly smaller for the model taking into account the vari- 

ble Y (coefficients A 12 different from zero) than the variance of 

he same model without taking into account the variable Y (coef- 

cients A 12 equal to zero), it means that the variable Y is the G- 

ause of the variable X [21] . Similarly, if the variance of the error

 2 in the second equation is smaller to a statistically significant de- 

ree for the model including the variable X (coefficients A 21 other 

han zero) from the variance of the prediction error for a model 

n which the variable X was not included (coefficients A 21 equal to 

ero), it means that the variable X is the G-cause of the variable Y. 

To test if variable Y is G-causing variable X, the F-test can be 

pplied [22] . First, the residual sums of squares ( RSS ) are calculated 

or the model making prediction only on past values of X ( Eq. (4 ))

nd for the model that uses for prediction past values of X and Y 

ime series ( Eq. (5 )) [23] . 

S S 1 = 

T ∑ 

t=1 

E X ( t ) 
2 (4) 

S S 2 = 

T ∑ 

t=1 

E X,Y ( t ) 
2 (5) 

Based on this, the test statistic for the F-test ( S ) can be com-

uted according to Eq. (6 ), where l is equal to the number of con-

idered lags, and T is equal to the number of predicted values [24] .

 1 = 

( RS S 1 − RS S 2 ) /l 

RS S 2 / ( T − 2 l − 1 ) 
∼ F l ,T −2 l −1 (6) 

The value of the S 1 test statistic is consistent with the Fisher 

istribution with 

l and (T-2l-1) degrees of freedom. To test whether Y causes X 

Y → X), the F-test is performed under the null hypothesis that Y 

oes not cause X and the alternative hypothesis that Y is causing 

. 

Also, the Chi-squared test may be applied with test statistics 

omputed according to Eq. (7 ) [23] . 

 1 = 

T ( RR S 1 − RS S 2 ) 

RS S 2 
∼ χ2 ( p ) (7) 

Causality can not only be tested for occurrence but also quanti- 

ed according to Eq. (8 ), where σ 2 E X means variance of the error 

btained from the model based only on the past values of X and 

2 E X,Y is the variance of the error obtained from the model based 

n the past of both signals [ 6 , 7 , 25 ]. 

 Y → X = ln 

σ 2 E X 
σ 2 E X,Y 

(8) 

If three time series (X–Z) are available, the mutual Granger 

ausality analysis for two variables for each pair is not able to 

how some relationships between the data. For example, if Y is 

he signal causing Z, and Z is the signal causing X, but Y is not the

ignal causing X, then in the case of a two-variable analysis, this 

ill be indistinguishable from the situation where Y is the signal 

ausing both Z and X. This situation is presented in Fig. 1 . With a
2 
ausality analysis for two time series for both presented cases, the 

btained result will suggest the presence of the relationship pre- 

ented in part A of Fig. 1 . 

In order to distinguish such situations, a conditional Granger 

ausality test can be used. It is able to indicate whether the past 

f the Y signal helps to reduce the variance of the prediction error 

f X predicted from the past of X and Z time series. In the case of

onditional causality analysis, the linear autoregressive equations 

resented in Eq. (2 ) are extended by the sum of the products of 

he respective coefficients ( A 13 ) and the third variable Z, so that 

his variable is used for forecasting the present value of X, as pre- 

ented in Eq. (9) . 

 ( t ) = 

p ∑ 

j=1 

A 11 , j X ( t − j ) + 

p ∑ 

j=1 

A 12 , j Y ( t − j ) 

+ 

p ∑ 

j=1 

A 13 , j Z ( t − j ) + E 1 ( t ) (9) 

Similar to the causality analysis for two time series, two models 

re created in the conditional causality analysis. The first one does 

ot take into account the past of variable Y in the model (coeffi- 

ients A 12 equal to 0), the second one takes into account the past 

f all variables (coefficients A 12 different from 0). If error E 1 is sta- 

istically significantly smaller for the second model it means that 

 is causing X conditioned on Z, which is written as Y → X|Z. 

.2. Nonlinear methods for Granger causality analysis 

The main limitation of the approach presented by Granger is 

he usage of the linear model. Due to the fact that many real data 

urn out to be non-stationary processes, this introduces a large 

imitation for the above-mentioned methods, which assume the 

tationarity of the tested time series. It is possible to overcome 

he issue of non-stationarity of the time series by the usage of 

ector error correction models however, the modeling is still us- 

ng linear autoregression [ 26 , 27 ]. The limitation coming from the 

sage of the AR model is that more complex causality dependen- 

ies may not be captured by this method [ 21 , 28 ]. Thus, many re-

earchers use other models for prediction instead of linear autore- 

ression. One of the approaches of nonlinear causality testing is 

ernel Granger Causality (KGC) [ 29 , 30 ]. It is based on the trans-

ormation of the data using a specified kernel function. The inner 

roduct of the data and kernel function is used to perform the lin- 

ar regression. The nonlinearity of this method is controlled by the 

hoice of the kernel function. KGC can be applicable for multivari- 

te problems, it also allows for quantification of the causality and 

oes not suffer from overfitting problem which is a common issue 

or many methods [31] . Another approach that is growing in pop- 

larity is to use neural networks as a forecasting method [ 14 , 32–

7 ]. Proposed in 2017, Causal Relationship Estimation by Artificial 

eural Network (CREANN) method uses weights of Multilayer Per- 

eptron to assess the causality of the individual lags [36] . This 
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Fig. 2. MLP model which is forecasting the current value of X based on 3 past val- 

ues of X with activation functions and example weights shown. 
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ethod is robust with respect to signal-to-noise ratio and model 

rder however, it does not make statistical inference about causal- 

ty. Another recently proposed method for causality assessment is 

arge-scale nonlinear Granger causality (lsNGC) [14] . In this ap- 

roach, the Generalized Radial Basis Functions neural network is 

sed as a prediction model. In the experiments conducted by Wis- 

üller et al. [14] , this method outperformed other methods com- 

ared, including KGC. The lsNGC was implemented in Python and 

ade available to researchers to use [38] . Other existing Python 

olutions using neural networks to study causality use lasso reg- 

larization [ 39 , 40 ]. By using this technique, some input weights 

re zeroed and those Y lag values whose weights are not equal 

o zero are considered to be the values that cause the time series 

. The results obtained using this approach do not allow for sta- 

istical inference using statistical tests and depend on the value of 

he lambda parameter corresponding to the lasso penalty. 

The created Python package presented in this paper was de- 

igned to test for causality with precise forecasting thanks to the 

sage of neural networks. By the usage of dropout and out-of- 

ample testing, the overfitting problem, which might lead to false 

ausality detection, can be omitted. Moreover, the package allows 

he quantification of the change in causality over time (which is 

ot enabled by any other available package). Created functions al- 

ow for the forecasting using Multilayer Perceptron (MLP) and re- 

urrent neural networks, in particular Long-Short Term Memory 

LSTM) and Gated Recurrent Unit (GRU). It also supports the us- 

ge of ARIMA model, which is not in the scope of this paper. The 

pproach proposed by the authors does not make the obtained re- 

ults dependent on an additional parameter or chosen kernel and 

llows for statistical inference. The package is designed to help sci- 

ntists use more complex models in terms of Granger causality 

n an easy user-friendly way without very specific programming 

nowledge, as well as study causality changes over time, which is 

ot provided by any other framework. It was designed to study the 

elationship between biological signals, however, it can be widely 

sed in any field of science. The paper aims at presenting the 

ethod and corresponding Python package, along with a simula- 

ion study showing its usage and relevance. 

. Methods 

.1. Used models 

.1.1. Multilayer perceptron 

MLP is a type of artificial neural network, which is built from 

any single perceptrons organized in layers. MLP are the most 

opular artificial neural networks used for forecasting, but also in 

he field of physiology [ 41 , 42 ]. Each perceptron in the first layer

akes as an input the features vector and calculates its output as 

resented in Eq. (23 ), where w are weights and f is the activation

unction. 

 = f ( w 0 + w 1 ∗ x t−1 + w 2 ∗ x t−2 + . . . + w p ∗ x t−p ) (23) 

Neurons in successive layers take the output values of neurons 

rom previous layers y as the input vector. In the created package, 

he activation function in hidden layers is the Rectified Linear Unit 

ReLU) function, while in the output layer it is a linear function. 

he architecture of a simple MLP model based only on past values 

f X and predicting the current value of X for the Granger causality 

est is presented in Fig. 2 . 

.1.2. Long short-term memory 

The LSTM is a type of gated recurrent neural network. It is of- 

en used for sequence data analysis like text and speech recogni- 

ion, time series forecasting, or physiological data analysis [43–45] . 

he LSTM network includes a system of gate units, thanks to which 
3 
t is able to control the flow of information, and thus "remember" 

r "forget" information from previous moments in time. What is 

ore, this type of network is not affected by the gradient vanish- 

ng or explosion problem, which is common for recurrent neural 

etworks [46] . The big advantage of using LSTM in causality testing 

s that, unlike linear regression models, those types of networks do 

ot assume the stationarity of the predicted time series. The LSTM 

ell takes as input as the input vector x(t) , the value of the long-

erm state from the previous time point s(t-1) and the value of 

he short-term state from the previous time point h(t-1) . Instead, 

t returns the value of the short-term h(t) and long-term s(t) state 

t the current moment in time. The first gate is the forget gate, 

hich controls what part of the information from the past is “re- 

embered” and which one is “forgotten”. For this purpose, a sig- 

oid function is used, and the value passed further from the forget 

ate is calculated based on Eq. (24) . 

f ( t ) = σ
(
U 

f x ( t ) + W 

f h 

( t−1 ) + b f 
)

(24) 

Another important gate is the input gate. It determines the de- 

ree of status update at a given moment in time. For this, it uses 

he sigmoid function to select the values that should be used to 

pdate the state at a given moment from the input vector and the 

utput vector for the previous moment of time. The formula de- 

cribing the operation of the input gate is presented in Eq. (25 ), 

here U 

i is the gate input weights, W 

i is the recursive weights, 

nd b i is the bias of the input gate. For the state to be updated,

he candidate values are also calculated using the hyperbolic tan- 

ent for the input vector and the output vector of the previous 

ime moment, taking into account the appropriate weights U 

s and 

 

s and the bias b s as shown in Eq. (26) . 

 

( t ) = σ
(
U 

i x ( t ) + W 

i h 

( t−1 ) + b i 
)

(25) 

˜ 
 

( t ) = tanh 

(
U 

s x ( t ) + W 

s h 

( t−1 ) + b s 
)

(26) 

Updating the LSTM cell state takes place by summing the prod- 

ct of the result obtained on the forget gate f (t) and the state value

t the previous time point s (t-1) with the product of the result ob- 

ained on the input gate with the candidate values. The formula 

or updating the state is shown in Eq. (27) . 

 

( t ) = f ( t ) s ( t−1 ) + i ( t ) ˜ s ( t ) (27) 

The last gate in the LSTM cell is the output gate, the opera- 

ion of which is described in Eq. (28 ), where U 

o is the gate input

eights, W 

o is the recursive weights, and b o is the bias of the out- 

ut gate. Like the other gates, it uses a sigmoidal function to con- 

rol which state values at a given point in time will be included in 

he calculation of the final output of the network. 

 

( t ) = σ
(
U 

o x ( t ) + W 

o h 

( t−1 ) + b o 
)

(28) 
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The computation of the output of the LSTM cell is done by mul- 

iplying the hyperbolic tangent of the cell’s state and the result ob- 

ained from the output gate as shown in Eq. (29) . 

 

( t ) = o ( t ) tanh 

(
s ( t ) 

)
(29) 

Thanks to the use of the three above-described gates, the LSTM 

eural network is able to control the flow of information between 

onsecutive time moments by "remembering" or "forgetting" them. 

hat is more, LSTM networks have greater ease in recognizing 

ong-term dependencies than simple recursive network architec- 

ures [47] . 

.1.3. Gated recurrent unit 

GRU neural network was presented by Cho et al. in 2014 [48] . 

RU, like LSTM, is a kind of gated recursive neural network. The 

RU network is characterized by the use of two gates - a reset 

ate and an update one. Such a recursive neural network architec- 

ure also prevents gradient vanishing and exploding effects [47] . In 

he GRU cell, the update gate is a kind of counterpart of the for- 

et gate and input gate in the LSTM cell. The update gate controls 

hich information is “forgotten” and which new information from 

 given point in time will be taken into account in further calcula- 

ions. The operation of the update gate is based on calculating the 

alue of the sigmoid function for the input data and the cell result 

rom the previous time moment, taking into account the appropri- 

te weights U 

u and W 

u and the bias b u , as shown in Eq. (30 ) [49] .

 

( t ) = σ
(
U 

u x ( t ) + W 

u h 

( t−1 ) + b u 
)

(30) 

The reset gate, on the other hand, only serves to control the 

mount of past information that will be used to compute the can- 

idate state [50] . Like the other gates, the reset gate uses a sig-

oidal function with appropriate weights U 

r and W 

r and bias b r 

s presented in Eq. (31) . 

 

( t ) = σ
(
U 

r x ( t ) + W 

r h 

( t−1 ) + b r 
)

(31) 

After calculating the value of the reset gate, the candidate state 

alue is calculated, which will be used in the next step to calculate 

he value of the GRU cell state at a given time moment. The candi-

ate state value is calculated using the hyperbolic tangent function, 

ccording to Eq. (32 ), where U 

h and W 

h are the weights, while b h 

orresponds to the bias. 

˜ 
 

( t ) = tanh 

(
U 

h x ( t ) + W 

h 
(
r ( t ) h 

( t−1 ) 
)

+ b h 
)

(32) 

The value of the state h t at a given point in time is computed

sing the value of the update gate, the value of the candidate state 

nd the value of the state at the previous point in time, according 

o Eq. (33) . 

 

( t ) = 

(
1 − u 

( t ) 
)
h 

( t−1 ) + u 

( t ) ˜ h 

( t ) (33) 

Thanks to the use of a reset gate and an update gate, the GRU 

etwork is able to "forget" and "remember" information at succes- 

ive time points. GRU networks, as well as LSTM networks, are not 

ffected by the gradient vanishing or explosion problem and do 

ot assume the stationarity of the predicted time series. The recur- 

ive neural network of the GRU type has similar advantages to the 

STM type network, however, thanks to the use of two gates in- 

tead of three, the GRU network has fewer parameters, which sim- 

lifies the learning process and reduces computational complexity. 

.2. Statistical significance assessment 

The F-test is based on residual sums of squares, which are min- 

malized by linear autoregression models using the least-squares 

ethod. This test cannot be performed in the case of using neu- 

al networks for prediction, because those models are fitted using 
4 
ther methods as the “Adam” algorithm and thus value obtained 

rom Eq. (6 ) for neural networks may not follow the assumed F- 

istribution [51] . 

Therefore, we decided to test if the error obtained by the 

odel, which uses both time series for prediction is significantly 

maller than the error obtained by the model using only one time 

eries as an input by using Wilcoxon signed-rank test [52] . 

The null hypothesis is that the median absolute error for a 

odel based on past values of X is equal or smaller than for a 

odel based on past values of X and Y, while the alternative hy- 

othesis is that the model based on past values of both X and Y 

ime series has a smaller median absolute error. In order to ex- 

mine this hypothesis differences between absolute errors of both 

odels are calculated. Then ranks are assigned to obtained num- 

ers based on their absolute values. The sign of the obtained dif- 

erence is allocated to the rank and the sum of positive and neg- 

tive ranks are calculated. In Python implementation, the sum of 

ositive ranks is taken as a statistic value ( T ) based on which p-

alue is calculated [53] . If the number of differences ( n ) is less than

r equal to 25 then the p -value is derived from the tables. If n is

reater than 25, then a normal approximation is applied. In this 

ase, the test statistic ( z ) is calculated according to Eq. (34 ) and

ollows the normal distribution [54] . 

 = 

T − n ( n +1 ) 
4 √ 

n ( n +1 ) ( 2 n +1 ) 
24 

(34) 

.3. Description of the created package 

Taking all considerations together, we created the Python pack- 

ge, which aims to help researchers to study causality using non- 

inear prediction methods [ 55 , 56 ]. The use of neural networks for 

rediction has been implemented using the Keras library [57] . The 

ackage consists of 8 functions, which can be split into 2 different 

ypes. The first type of functions are simply functions for testing 

he causality relationship between two time series (with possible 

dditional time series in terms of conditional causality) using the 

bove-mentioned methods and the ARIMA model, which is not in 

he scope of this paper. The first input of those functions is NumPy 

darray with 2 columns, where each column represents one time 

eries, and the number of rows depends on the number of times 

teps. The second input may be an int, list, tuple, or NumPy ndarray . 

f it is an int , then the causality test is made for lags in the range

rom 1 to the given number, in other cases, the test is made only 

or numbers given in this variable. In functions using neural net- 

orks for prediction additional required inputs are describing the 

rchitecture of the network. As an output functions of this type re- 

urn a dictionary , where the keys are the number of lags for which 

he test was performed. Each key stores a list , which contains test 

esults, the model for prediction of X fitted only on X time series 

nd the model for prediction of X fitted on X and Y time series, in-

ividual errors and RSS of both models, in case of functions using 

eural networks additional history of fitting the first model and 

istory of fitting the second model are also stored under this key. 

The second type of function is focused on measuring the change 

f causality over time. The first input for those functions is the 

ame as in the first type, but the number of columns may be 

reater than 2. If so, then causality between each pair of time se- 

ies (columns) is measured. As those functions measure the change 

f causality over time two windows were applied. The first w1 is 

esponsible for the number of time steps from which the causality 

s calculated, and the second window w2 relates to the number of 

ime steps by which the window w1 is moved after the causal- 

ty is calculated. So the first value of causality is calculated for 

ime moments from 1st to w1 th, the second value is calculated for 
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Fig. 3. Visualization of windows used for calculation of change of causality over time. 

Fig. 4. Graph of proposed causality measure from the quotient of RMSE X and 

RMSE X,Y . 
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ime moments from w2 th to ( w1 + w2 )th and so on as presented in

ig. 3 . 

As the measure presented in Eq. (8 ) is not applicable for the 

nalysis of the change of causality over time, the new measure of 

his phenomenon was proposed. This measure of causality is based 

n the root mean square errors (RMSE) obtained from both models 

rom the currently analyzed window w1 . RMSE used for calculation 

f causality in the first window is presented in Eqs. (35 ) and (36) .

MS E X = 

√ 

w 1 ∑ 

t=1 

E X ( t ) 
2 
/w 1 (35) 

MS E X,Y = 

√ 

w 1 ∑ 

t=1 

E X,Y ( t ) 
2 
/w 1 (36) 

The measure proposed by authors is shown in Eq. (37 ). If the 

btained value is smaller than 0 then the result is changed to 0, 

ecause a negative number has no sense in terms of causality. The 

lot of values of the proposed measure in relation to the quotient 

f RMSE X and RMSE X,Y is presented in Fig. 4 . 

 Y → X = 

2 (
− RMS E X + 1 

) − 1 (37) 
1 − e RMS E X,Y 
N

5 
. Results 

.1. Simulated signals 

In this paper, we would like to present the usage and possibil- 

ties of the created package in terms of detecting the causality by 

ifferent models in two cases - with the presence of the causal- 

ty between the signals and with no dependencies between the 

ime series. The results of the causality detection and forecasting 

ccuracy were compared with linear and nonlinear methods. What 

s more, we would like to present the unique feature of illustrat- 

ng the change of causality over time using the chosen model. To 

resent the performance of the package two signals with 10,0 0 0 

amples each were generated, where Y is a periodic function and 

 is a polynomial function of Y delayed by 100-time steps as pre- 

ented in Eqs. (38 ) and (39) and in Listing 1 . Some random noise

 E 1 and E 2 ) also was added to both signals in order to make them

ore real-like. Both X and Y time series were visualized in Fig. 5 .

 ( t ) = cos ( t ) + sin ( 0 . 15 ∗ t ) + E 1 ( t ) (38) 

 ( t ) = 2 ∗ Y ( t − 100 ) 
3 − 5 ∗ Y ( t − 100 ) 

2 + 0 . 3 ∗ Y ( t − 100 ) 

+2 + E 2 ( t ) (39) 

The first 70% of the signals were used as training data and the 

emaining 30% was used as a test dataset. The signals prepared in 

his way can be used for the causality analysis using the first kind 

f functions included in the developed module. It was decided to 

erform a causality test for two lags - smaller and greater than the 

ctual delay. The lags were equal to 50 and 150. 

Using the created Python module (version 1.0.3), three types of 

eural networks with the following architectures were applied for 

ausality analysis: 

• Two LSTM layers with 10 cells each (LSTM) followed by one 

output neuron with linear activation function; 
• Two GRU layers with 10 cells each (GRU) followed by one out- 

put neuron with linear activation function; 
• Two fully connected layers with 100 neurons each (MLP) and 

ReLU activation function followed by one output neuron with 

linear activation function. 

For each network dropout regularization technique was used 

ith a dropout rate equal to 0.01 (arguments NN_config and 

N_neurons for MLP and Dropout_rate in case of GRU and LSTM). 

eural networks were trained for 150 epochs, with a learning rate 
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Listing 1. Generation of two signals. 

Fig. 5. Visualization of signals X and Y. 
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qual to 0.001 and 0.0001 for the first 50 epochs and the last 100

pochs, respectively. To obtain the most accurate models LSTM and 

RU neural network models were created and trained 2 times (pa- 

ameter run ) and the MLP model 5 times. For final causality test- 

ng models (one based on X and one based on both X and Y) with

he smallest RSS were chosen. The difference in the value of the 

un parameter was due to the long time needed for LSTM and 

RU training. The usage of the created functions is presented in 

isting 2 . 

Regarding the detection of causality and the prediction perfor- 

ance, the presented methods were compared with models used 

n two other methods for causality testing, both of which allow for 

ut-of-sample forecasting and are as well implemented in Python. 

he first of these methods was a nonmodified Granger test, which 

ses linear autoregression (AR) for prediction. The second one was 

arge-scale nonlinear Granger causality (lsNGC) [ 14 , 38 ], which is 

ased on a Generalized Radial Basis Functions (GRBF) neural net- 

ork. Its parameters c f and c g , which are the number of hidden 

ayer neurons in the GRBF networks were set to 25. All models 

ere fitted on the training set and used on the test set. The ab-

olute values of the prediction errors obtained on a test set from 

 model based on the past of X and a model based on the past

f both signals were compared using Wilcoxon signed-rank test, 

o determine the presence of causality. Performance of all meth- 

ds was quantified using mean squared error (MSE), mean abso- 

ute error (MAE) and median absolute error (MedAE). Moreover, it 

as assessed if the usage of the proposed results in improvement 

f the prediction accuracy models in comparison to AR or GRBF 

etwork. For this purpose, Wilcoxon signed-rank test was used to 

ompare the absolute values of errors obtained from corresponding 

odels (e.g. MLP model based on past of X and AR model based 

lso on a past of X). The effect size of including the past of signal

 in prediction for each method was assessed using Cohen’s d. In 

rder to better visualize the results plots of predicted values ver- 

us the true values of X and plots of prediction error versus the 

redicted X values were prepared for each model. The steps of the 

ntire process of causality analysis were presented in Fig. 6 . 

In the next step of the analysis, the Y time series was replaced 

ith the random noise to compare the results from the tests in the 
6 
ase where the causality relation should be detected with the case 

here there is no relation between the signals. This analysis was 

erformed as well using the first 70% of the signal as the training 

et and the last 30% as the test set. The same metrics and tests 

ere performed as described in the previous paragraph. 

The second type of function in the package can be used to ex- 

mine the change of causality over time. In order to simulate such 

 change of causality relation the first 50% of the test Y signal was 

hanged to random noise ( Fig. 7 ), so there would be no causal re-

ation between X and Y at the first half of the test time series. To

resent this feature of the package the MLP architecture which ob- 

ained the highest Cohen’s d was chosen. Mentioned in Section 2.2 . 

indow values were set to 30 and 1 for w1 and w2, respectively. 

he example usage of the function for assessment of the change of 

ausality over time was presented in Listing 3 . 

The assumed significance level is equal to 0.05. All analyses 

ere performed using Python version 3.7.10. 

.2. Presence of causality from Y to X 

Each of the designed functions generates a plot of original test- 

ng signal X, values predicted by the model based only on past val- 

es of X and values predicted by the model based on past values 

f X and Y. For each function based on neural networks, it is possi- 

le to obtain a history of the fitting from the output of the function 

nd create the learning curve. Sample plots of the original and pre- 

icted data obtained from function nonlincausalityNN for lag 

qual to 50 and 150 are presented in Fig. 8 while learning curves 

f the models returned by this function are presented in Fig. 9 . 

All error metrics calculated on a testing set for each model for 

ag equal to 50 and 150 are presented in Table 1 . P -values obtained

rom the Wilcoxon signed-rank test used to assess the presence of 

ausality from Y to X for each method and each lag are presented 

n Table 2 . 

In case of lag equal to 50, all models from a created package 

NN) obtained similar results in terms of error metrics. The AR 

odels had a similar accuracy of prediction, while GRBF models 

end to obtain the biggest error metrics for model based only on 

he past values of X and the smallest one in the case of model 

ased on both signals, while model based on both time series ob- 

ained slightly smaller error metrics than LSTM, GRU and AR mod- 

ls. For the lag of 150, NN and AR mostly obtained similar results, 

xcept for MLP model based on X and Y which outperformed all 

ther models and got the smallest error in the case of all three 

etrics. In the case of the bigger lag GRBF model had a drop in 

erformance for the model based only on X signal. In the case of 

he causality test, all nonlinear methods obtained a p-value smaller 

han the assumed significance level, thus in the case of using any 

f the presented models or GRBF the causality relationship be- 

ween signals was detected, even for lag smaller, than the actual 

elay between the time series. The autoregressive model used in 

he state-of-the-art Granger method did not capture the causality 

or any given lag. 

P -values obtained from the Wilcoxon signed-rank test used 

o assed the improvement in prediction due to usage of neural 

etworks over autoregressive and GRBF models are presented in 

able 3 and Table 4 , respectively. Cohens’d used to assess the effect 

ize of incorporating the past of Y signal into the models are pre- 

ented in Table 5 . Plots of predicted values from actual values are 

resented in Figs. 10 , and 11 . for lag 50 and 150, respectively and
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Listing 2. Using the functions for causality testing. 

Fig. 6. The process scheme of the data analysis from generating the data up to the causality and prediction assessment. In the case of real-world application, the process 

would be the same, but X and Y would be the data obtained from the study. 
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lots of the prediction error from predicted values are presented 

n Figs. 12 and 13 . 

The usage of neural networks over AR did not statistically sig- 

ificantly improve the prediction of the X signal if taking only past 

alues of X as an input. On the other hand, the usage of NN over

RBF with one signal as an input always results in significantly 
Listing 3. Usage of the function for measuring the 

7 
etter prediction accuracy. If the model was based on both X and 

 signals the usage of neural networks instead of the autoregres- 

ive model improved the prediction in 5 out of 6 cases (only the 

LP model for 50 lags did not obtain significantly better results). 

n the case of GRBF, only MLP model for lag equal to 150 outper- 

ormed it. For both lags, the effect size of incorporating past of Y 
causality change over time with MLP models. 
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Fig. 7. Visualization of test signals X and Y with the first 50% of the test Y signal changed to random noise. 

Fig. 8. The plot of the original value of X, predicted values from the model based on the past values of X and predicted values from the model based on past values of X 

and Y. If there is causality from Y to X, then the values predicted based on both signals should be closer to the actual values than the values predicted only with the past X 

values (prediction error of model based on both signals should be lower, then the error of model based only on X). 

8 
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Fig. 9. Plot presenting the dependencies between loss and number of epochs for lag equal to 50 and 150. 

Table 1 

Error metrics (MSE, MAE and MedAE) obtained on a test set for each model created based on 50 and 150 past values in the case where Y → X. The smallest error 

metric for a given case is shown in bold. 

Lag value Metrics Model trained on LSTM GRU MLP AR GRBF 

50 MSE X 0.042 0.041 0.042 0.041 0.057 

X and Y 0.039 0.039 0.039 0.041 0.038 

MAE X 0.162 0.161 0.162 0.161 0.188 

X and Y 0.158 0.158 0.161 0.161 0.155 

MedAE X 0.139 0.138 0.136 0.136 0.153 

X and Y 0.137 0.135 0.137 0.140 0.135 

150 MSE X 0.041 0.041 0.045 0.041 0.254 

X and Y 0.039 0.038 0.011 0.041 0.036 

MAE X 0.159 0.161 0.166 0.160 0.413 

X and Y 0.156 0.156 0.078 0.160 0.151 

MedAE X 0.135 0.136 0.132 0.137 0.379 

X and Y 0.134 0.134 0.056 0.136 0.130 

Table 2 

P -values for each model and each tested lag obtained from the Wilcoxon signed- 

rank test in case where Y → X. Cases, where a causal relationship has been de- 

tected, are shown in bold. 

Lag value LSTM GRU MLP AR GRBF 

50 < 0.001 < 0.001 0.025 0.703 < 0.001 

150 < 0.001 < 0.001 < 0.001 0.261 < 0.001 

Table 3 

P -values form a comparison of the models performances, with the al- 

ternative hypothesis that error obtained from neural networks models 

is smaller than for autoregressive ones in a case where Y → X. Cases, 

where usage of the neural network resulted in significantly better per- 

formance, are shown in bold. 

Lag value Model trained on LSTM GRU MLP 

50 X 0.969 0.899 0.944 

X and Y < 0.001 < 0.001 0.068 

150 X 0.227 0.814 0.991 

X and Y 0.010 0.008 < 0.001 

s

A

l

f

Table 4 

P -values form a comparison of the model performances, with the alternative hy- 

pothesis that absolute error obtained from neural networks models is smaller 

than for GRBF ones in a case where Y → X. Cases, where usage of the neural net- 

work resulted in significantly better performance, are shown in bold. 

Lag value Model trained on LSTM GRU MLP 

50 X < 0.001 < 0.001 < 0.001 

X and Y 0.991 0.998 1.000 

150 X < 0.001 < 0.001 < 0.001 

X and Y 1.000 1.000 < 0.001 

Table 5 

Cohens’d for the case where Y → X. The highest Cohens’d for each lag are 

shown in bold. 

Lag value LSTM GRU MLP AR GRBF 

50 0.047 0.046 0.049 0.005 0.013 

150 0.037 0.044 0.659 0.001 0.054 

3

l

d

s

s

e

ignal into prediction was the highest for MLP and the smallest for 

R. The biggest Cohen’s d equal to 0.659 was obtained for MLP for 

ag equal to 150. Prediction error was equally distributed around 0 

or the whole range of predicted values. 
9 
.3. Absence of causality from Y to X 

The metrics calculated for the analysis, where there was no re- 

ationship between the time series (with the Y changed to ran- 

om noise) are presented in Table 6 . The results from the Wilcoxon 

igned-rank test used to test for the presence of causality are pre- 

ented in Table 7 . 

For the lag of 50 neural networks obtained the same or higher 

rror measure values than autoregressive models. For lag equal to 
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Fig. 10. The plot of predicted values from true X values for lag equals 50. The solid black line represents y equals to x. 

Table 6 

Error metrics (MSE, MAE and MedAE) obtained on a test set for each model created based on 50 and 150 past values in the case where there was no 

causality relation between signals. The smallest error metric for a given case is shown in bold. 

Lag value Measure Model trained on LSTM GRU MLP AR GRBF 

50 MSE X 0.042 0.041 0.042 0.041 0.055 

X and Y 0.042 0.041 0.042 0.041 0.055 

MAE X 0.162 0.161 0.163 0.161 0.184 

X and Y 0.162 0.161 0.164 0.161 0.184 

MedAE X 0.138 0.137 0.136 0.136 0.152 

X and Y 0.138 0.137 0.138 0.135 0.150 

150 MSE X 0.041 0.041 0.045 0.041 0.278 

X and Y 0.041 0.041 0.049 0.041 0.276 

MAE X 0.161 0.159 0.168 0.160 0.443 

X and Y 0.160 0.160 0.173 0.162 0.442 

MedAE X 0.137 0.134 0.135 0.137 0.417 

X and Y 0.137 0.136 0.140 0.137 0.411 

10 
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Fig. 11. The plot of predicted values from true X values for lag equals 150. The solid black line represents y equals to x. 

Table 7 

P -values for each model and each tested lag obtained from the Wilcoxon signed- 

rank test in the case where there was no causality relation between signals. Cases, 

where a causal relationship has been detected, are shown in bold. 

Lag value LSTM GRU MLP AR GRBF 

50 0.558 0.267 0.930 1.000 0.127 

150 0.073 0.592 0.999 1.000 0.024 

1

G

G

m

t

c

i

a

w

T

Table 8 

P -values from a comparison of the model performances, with the alternative hy- 

pothesis that error obtained from neural networks models is smaller than for 

autoregressive ones in the case where there was no causality relation between 

signals. Cases, where usage of the neural network resulted in significantly better 

performance, are shown in bold. 

Lag value Model trained on LSTM GRU MLP 

50 X 0.982 0.941 0.999 

X and Y 0.857 0.486 1.000 

150 X 0.607 0.219 1.000 

X and Y 0.041 0.038 1.000 

f

c

t

f

m

M

i

50 the measures were mostly higher for MLP, mostly lower for 

RU and mostly equal to those obtained by AR for LSTM. The 

RBF compared to other models obtained slightly higher error 

etrics for lag equal to 50 and several times larger for lag equal 

o 150. Causality was not detected using any of the models ex- 

ept the GRBF model for a delay of 150, where false causality was 

ndicated. 

P-values obtained from the Wilcoxon signed-rank test used to 

ssed the improvement in prediction due to usage of neural net- 

orks over autoregressive and lsNGC models are presented in 

able 8 and Table 9 , respectively. Cohens’d used to assess the ef- 
11 
ect size of incorporating the past of Y signal (random noise in this 

ase) into the model are presented in Table 10 . 

The only models which performed statistically significantly bet- 

er than AR were GRU and LSTM models based on both X and Y 

or lag equal to 150. All NN models performed better than GRBF 

odels in all cases. The highest Cohens’d was obtained again for 

LP models, but all values were much smaller compared to those 

n the case where Y → X. 
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Fig. 12. The plot of prediction errors from predicted X values for lag equals 50. 

Table 9 

P -values form a comparison of the model performances, with the alternative hy- 

pothesis that error obtained from neural networks models is smaller than for 

GRBF ones in the case where there was no causality relation between signals. 

Cases, where usage of the neural network resulted in significantly better perfor- 

mance, are shown in bold. 

Lag value Model trained on LSTM GRU MLP 

50 X < 0.001 < 0.001 < 0.001 

X and Y < 0.001 < 0.001 < 0.001 

150 X < 0.001 < 0.001 < 0.001 

X and Y < 0.001 < 0.001 < 0.001 

3

u

m

s

a

d

i

Table 10 

Cohens’d for the case where there was no causality relation between signals. The 

highest Cohens’d for each lag are shown in bold. 

Lag value LSTM GRU MLP AR GRBF 

50 < 0.001 < 0.001 0.004 < 0.001 < 0.001 

100 < 0.001 < 0.001 0.005 < 0.001 < 0.001 

s

i

m  

i  

w

X  

t
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.4. Change of the causality over time 

The analysis of the change of causality over time was performed 

sing the same MLP architecture as for causality testing which 

anaged to obtain the biggest Cohen’s d in the analysis. The mea- 

ure of causality according to Eq. (37 ) and its change over time 

long with the original time series for better visualization of the 

ependency for 50 lags was presented in Fig. 14 and for 150 lags 

n Fig. 15 . 
12 
For lag equal to 150 when the causality relation from signal Y to 

ignal X appears (after the random noise) there is a visible increase 

n the measure of causality for Y → X. After the random noise the 

easure for Y → X tends to be much higher, than for X → Y (as there

s no such causality). In case of lag equal to 50 in part of the plot

here there is the random noise, the measures are similar for both 

 → Y and Y → X, while after this part the measure for Y → X seems

o be slightly bigger than for X → Y (but smaller than for the lag 

f 150). In the middle of the signals for both lags, there is an in-

rease in causality from X to Y, which means that in that part the 

odel was able to benefit from using the X signal in forecasting 

he Y in terms of decreasing the prediction error. The maximum of 

he causality measure for the lag of 50 is equal to 0.324 and 0.139 
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Fig. 13. The plot of prediction errors from predicted X values for lag equals 150. 
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or X → Y and Y → X, respectively and for lag equal to 150 those val-

es were equal to 0.318 and 0.620. The mean value of the causal- 

ty for lag equal to 50 was equal to 0.009 and 0.014 for X → Y and

 → X, respectively, while for lag equal to 150 those values were 

qual to 0.007 for X → Y and 0.128 for Y → X. However, it should be

mphasized that the mean and maximum values of the causality 

easure are showing the gain from incorporating the other vari- 

ble into prediction and those values cannot be interpreted as a 

resence of causality between signals on their own. As showed in 

he previous sections the assessment of the presence of causality 

s performed using Wilcoxon signed-rank test. 

. Discussion 

The methods presented in this paper are focused on overcom- 

ng the main disadvantages of the non-modified Granger method 

ased on linear autoregressive models and proposing an alternative 

or existing nonlinear methods. The first weakness of the linear 

ranger causality test is that of using AR models the state-of-the- 
13 
rt Granger approach may not capture the more complex, nonlin- 

ar causality dependencies like polynomial, exponential, logarith- 

ic, or others that are visible in many biomedical, physiological, 

conomic and social measurements/signals. What is more, the AR 

odels are assuming the stationarity of the signals, which is prob- 

ematic as most real-life signals are not stationary (however this 

roblem might be also addressed by usage of vector error correc- 

ion model [ 26 , 27 ], but this approach is still assuming the linearity

f the dependency and is not implemented in the existing Python 

ackages). Thanks to the usage of neural networks models it is 

ossible not only to detect the causal relations, which are nonlin- 

ar but also to test the dependencies between nonstationary time 

eries and obtain very accurate forecasting results. In order to test 

he proposed approach and the created Python package, two time 

eries were simulated, where the signal X was a polynomial of the 

 signal and was delayed in relation to it by 100-time steps. The 

ata analysis was performed in 2 different ways. In the first ap- 

roach, both models (based on the past of X and the past of X and

) were trained on the first 70% of the data and testing for causal- 
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Fig. 14. The measure of causality ( Eq. (37 )) from signal Y to signal X (Y → X) and from signal X to Y (X → Y), along with signal X and Y for analysis for 50 lags. The axis on 

the left represents the signal values, and the axis on the right represents the causality value. 

Fig. 15. The measure of causality ( Eq. (37 )) from signal Y to signal X (Y → X) and from signal X to Y (X → Y), along with signal X and Y for analysis for 150 lags. The axis on 

the left represents the signal values, and the axis on the right represents the causality value. 
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ty on the remaining 30% to check the robustness of the methods. 

he second analyses were similar to the first one, but the Y signal 

as changed to a random noise so there was no causality relation 

etween X and Y. This change was made to test if the proposed 

ethods do not indicate the false causality relations. The proposed 

odels were compared with the autoregressive model used in the 

raditional Granger method and with the Generalized Radial Basis 

unctions neural network used in lsNGC approach [14] . 

The created functions based on neural networks were able 

o detect the causality relation between time series for lag both 

maller and greater, than the actual delay between the two sig- 

als. The GRBF models also indicated the presence of true causal- 

ty, unlike the AR ones, which were not able to detect this depen- 
14 
ency. The biggest difference between the results for lag bigger 

nd smaller than the actual delay between X and Y signals were 

he p-value, Cohens’d and error metrics for MLP models. The p- 

alue was many orders of magnitude smaller for the lag equal to 

50, while Cohen’s d was much higher for this lag value. The MLP 

odel based on both X and Y obtained much smaller error met- 

ics in case of the lag equal to 150 compared to the results for 

ag equal to 50. In the case of lag equal to 150, there was a large

rop in the precision of GRBF model based on the past of X com- 

ared to the same model but for a smaller lag value. In the case 

f other models, the performance was rather similar irrespective 

f the value of the lag. The plot of predicted value from the actual 

alue was much more centered around the line y equals to x for 
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LP model using both signals for lag equal to 150, which also indi- 

ates that the most accurate prediction was for this model. In the 

ase of GRBF model using only X signal for lag equal to 150, the 

oints are the least concentrated around the mentioned line, which 

lso confirms its lowest accuracy. When it comes to the plot of the 

rediction error from the predicted values, the MLP model based 

n X and Y for lag equals 150 is distinguished, where the error at 

igher predicted values is much smaller than in the case of other 

odels, while for GRBF based on X there is visible more dispersion 

f the points, which indicates the lowest prediction performance. 

he best results in terms of Cohen’s d and error metrics were ob- 

ained for MLP for lag equal to 150 for models based on both X 

nd Y signals. The usage of NN instead of AR mostly resulted in 

ore accurate results in the case of models based on both signals, 

hile compared to GRBF usage of NN was always more efficient 

or models based only on the past of X. 

When Y time series was changed to a random noise to test 

f proposed methods do not indicate the false dependency when 

here is no causal relation between examined time series, all neu- 

al networks obtained from the created package and AR modes did 

ot detect any causality between the signals for any lag value. In 

he case of GRBF the false causality was detected for lag equal to 

50. Error metrics and Cohen’s d obtained by NN and AR models 

ere similar to each other, while for GRBF the prediction accuracy 

as the lowest especially in case of lag equal to 150. 

Compared to the autoregressive models used in traditional 

ranger causality analysis the proposed approach was character- 

zed by better or similar prediction performance and discovery of 

onlinear causality relations undetected by the AR models. In the 

ase of comparison with the nonlinear approach using GRBF the 

roposed solution was always superior in prediction based on the 

ast of only one variable and did not indicate any false causality, 

hich appeared to be the issue in one case for GRBF models. The 

dvantage of the proposed method over other approaches using 

on-linear data transforms such as KGC is the lack of assumptions 

bout the data transformation (kernel used). The prepared Python 

ackage is superior to other existing solutions that use neural net- 

orks with lasso regularization to study causality [ 39 , 40 ] as it al-

ows for statistical inference and the results are independent of the 

ambda parameter used in the lasso regularization. As the neural 

etworks applied in this research are already used in the analysis 

f physiological data [ 41 , 42 , 45 ], the created package can also find

ide application in the study of causal relationships in physiology, 

ut also other scientific fields. 

To our knowledge, a novelty of the created package is the pro- 

osed method of studying the change in causality over time, which 

ay allow for a better understanding of the causal relationships 

etween the signals. For both lags, the causality values seem to 

e bigger for the part of the signal without random noise. As ex- 

ected, the plots of the change of causality over time show much 

ore causal dependency for the lag equal to 150, than for lag equal 

o 50. For the higher lag, there is very clearly visible the moment 

hen the causality relationship appears. The value of the causality 

easure varies over time, probably due to the added noise to the 

ignal and to the out-of-sample testing. This feature of the package 

an be very useful especially in the case of signals which depen- 

ence varies over time. 

The limitations of the prepared package are the computational 

omplexity and time-consuming involved in training neural net- 

orks. However, the benefits of using neural networks seem to 

utweigh these issues. The limitation of the study is the use of 

imulated data, so further studies on real-world data are planned. 

n the near future, we plan to focus on using the created package 

o investigate the causal relationships between biomedical signals 

nd their dependence on various vital parameters as a continu- 

tion of research conducted by Mły ́nczak and Krysztofiak [ 16 , 17 ].
15 
e plan, among others, to use the package in the analysis of the 

ausality between the respiratory signal from impedance pneu- 

ography (tidal volume equivalent) and the cardiological signal 

rom the ECG (mainly RR-intervals and tachogram as their inter- 

olation) and to investigate the causality phenomenon in various 

roups of patients (network physiology paradigm [58] ). 

. Conclusion 

The usage of neural networks in causality testing allows captur- 

ng the nonlinear causal dependencies, which are not detected by 

he AR model used in the state-of-the-art Granger method. In the 

ase when there is no causal relation neural-network-based meth- 

ds do not indicate false causality, which might be an issue while 

sing GRBF model for prediction. Usage of neural networks al- 

owed to provide better prediction results especially in the case of 

ultilayer perceptron taking as an input past values of both time 

eries for a lag value greater than the actual delay. This model ob- 

ained the highest effect size of incorporating the past of Y signal 

nto the prediction model. The measure of the change of causality 

ver time seems to be a valid feature that allows to better under- 

tand the detected dependencies between the signals. The created 

ackage can be widely used (is available in PyPI [56] ) in the analy-

is of signals in different scientific fields like neuroscience, physiol- 

gy, or economy. Thanks to the proposed method, it is possible to 

tudy nonlinear dependencies, study causality changes over time, 

nd unlike similar nonlinear approaches, it is easily usable thanks 

o the package created in Python. 
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