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Objectives
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• Improve accuracy of tidal volume, peak and mean flows 
measured by impedance pneumography using several signal 
processing methods and suitable calibration procedure


• Detect motion artefacts in impedance pneumography signals


• Optimize sport training control by adding respiratory data
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Gold standard methods
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Spirometry and pneumotachometry

Mesh grid of  
known pneumatic 

resistance

• Direct measurements

• The most reliable results

• Require mouth piece with nose clip, or face mask 

• Cannot be performed in an outpatient setting
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Impedance pneumography

Z N A K  –  W E R S J A  P O D S T A W O W A  A N G I E L S K A

Changes of thoracic bioimpedance reflect  
changes of the amount of air in the lungs
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Sleep Physiology Sport medicine

• Observation of  
hypo-, normo- and 
hyperventilation in obese 
and neuromuscular 
disorders


• Cardiorespiratory 
coupling and causal paths 
analyses

• Home diagnostics


• Training control


• Determining  
the level of effort

• Breathing disorders 
monitoring


• Analysis of the effects of 
pharmacological 
treatment

Impedance pneumography
Possible ambulatory applications
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Raw impedance signal
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Could we suppress cardiogenic oscillations (Seppa et al., 2011)? 
Or even decompose respiratory and cardiac components (Mlynczak et al., 2017)?

Raw impedance 
pneumography signal



Signals after preprocessing
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Flow-related signal
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Could we improve flow-related signal dynamics (Mlynczak et al., 2017)?
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Fitting improvement
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Raw impedance 
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Calibration and reproducibility
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Calibration coefficients are not permanent  
in time, they should be recorded just before the 

measurement (Mlynczak et al., 2015)

Calibration coefficients are dependent on 
subject and body position, and not on 

parameters of breathing (Mlynczak et al., 2015)

What is the optimal procedure in terms of  
volume and flow parameters measurements?

Slopes can change, so we need calibration.



Calibration and parameters
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Raw impedance 
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Tidal volume
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Quantitative parameters determination
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Electrode configuration
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Receiving electrodes

Linear relationship maintained for configuration proposed by  
Seppa et al., 2013, in standing body position.  

We proved that linearity is still saved in supine and sitting positions (Mlynczak et al., 2014). 

Application electrodes
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Motion artefacts
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Approach with epsilon-tubes based from  
support vector machine algorithm (Ansari et al., 2016)

Could we detect motion artefacts and remove them  
without changing the shape of the signal (Mlynczak et al., 2017)?



Equipment

Z N A K  –  W E R S J A  P O D S T A W O W A  A N G I E L S K A

15

Pneumonitor 2 (Mlynczak et al., 2017)

• ECG signal to estimate heart rate 
and tachogram

• Impedance signal relating to    
main breathing activity

• Portable

• Recording on SD card

• Rechargeable battery

• Motion signal from 3-axis 
accelerometer to indicate   
subject’s activity and body position

• 14.2cm x 6.9cm x 2.3cm; 160g

• Sinusoidal application current amplitude 

adjustable up to 1mA, with a single, adjustable 
frequency (100kHz by default)


• Impedance range: 0-250 Ohms

• 250Hz sampling frequency, 100Hz pass 

frequency, 10-bit resolution

• ECG amplifier has a gain of 100V/V,  

10nV/sqrt(Hz) noise 

• InvenSense’s MPU-6050 (accelerometer and 

gyroscope unit, available commercially)



Equipment
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Pneumonitor 3 (Mlynczak et al., 2017)

• ECG signal to estimate heart rate 
and tachogram

• Impedance signal relating to    
main breathing activity

• Analog, SD and BT outputs 
• Improved handling 
• 5 electrodes instead of 7

• Wireless pulse oximeter to 
acquire saturation and pulse wave

• Motion signal from 3-axis 
accelerometer to indicate   
subject’s activity and body position

• 16.7cm x 10.1cm x 3.5cm; 330g

• Wireless pulse oximetry module -  

Contec CMS50EW (commercially available)

• 900mAh capacity of rechargeable battery



Equipment
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Electrode configurations (Seppa et al., 2013; Mlynczak et al., 2017)

IP electrodes

Pneumonitor 2 Pneumonitor 3

ECG electrodes

Electrodes for  
IP and ECG

Neutral 
electrode



Applicability
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The relation between childhood asthma risk and tidal volume  
(Seppa et al., 2016; Malmberg et al., 2016)

Does adding respiratory signal to commonly used set of 
cardiac parameters allows to obtain a fuller picture of the 

physiological condition and optimize sport training control?
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Improve accuracy of tidal volume, peak and  
mean flows measured by impedance pneumography  

using several signal processing methods and  
suitable calibration procedure

Objective 1



Methodology
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Study group - 10 healthy students (all males)
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Minimum Mean Maximum

Weight [kg]   65.0   77.4 100.0

Height [cm] 171.0 179.3 187.0

BMI     20.75     24.14     33.41

Age 19 23 27



Test procedure
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6 breaths with different depths:

➡ normal (approx. 0.5 - 2.0 L)

➡ deep (approx. 2.0 - 5.0 L)


for 3 respiratory rates:

➡ 6 BPM

➡ 10 BPM

➡ 15 BPM


and for 3 body positions:

➡ supine

➡ sitting

➡ standing

21

Reference:  
Flow Measurement System M909  

(Medikro Oy, Finland)

Optimization criteria:  
absolute and relative error 
in comparison to reference



Calibration procedures
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• The shortest one

➡ Free breathing for 30 seconds


• To check the impact of longer measurement

➡ Free breathing for 2 minutes


• To verify that adding frequency and depth variation  
can significantly improve accuracy


➡ Fixed breathing


Each procedure was repeated for all considered body positions:

• supine

• sitting

• standing

22

Determining optimal in terms of tidal volume and flow parameters



Calibration procedures
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• The shortest one

➡ Free breathing for 30 seconds


• To check the impact of longer measurement

➡ Free breathing for 2 minutes


• To verify that adding frequency and depth variation  
can significantly improve accuracy


➡ Fixed breathing


Each procedure was repeated for all considered body positions:

• supine

• sitting

• standing
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Determining optimal in terms of tidal volume and flow parameters

The best for tidal volume measurements

The best for flow  
parameters measurements



Decomposition
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Separating respiratory and cardiac components
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Decomposition
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Separating respiratory and cardiac components

• Moving average smoothing, with windows: 
➡ 0.5 s (mild)

➡ 1.0 s (as proposed by Koivumaki et al., 2012)

➡ 1.5 s (strong)


• Savitzky-Golay filter  
➡ 2nd-order, with a 25 probes window

➡ 7th-order, with a 25 probes window


• Least mean square adaptive filtration 
➡ subtraction of raw IP signal and the noise component,    

then smoothed with 200 ms window

➡ subtraction of raw IP signal and the noise component,    

then smoothed with 400 ms window

25

0.5 s

1.0 s

1.5 s
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• Impulse response filtration 
➡ 25-fold decimation (performed twice using 5-fold  

coefficient), then applying 10th order least-square  
FIR filter with 1 Hz pass and 2.5 Hz stop frequencies,  
at the end the spline interpolation to return to  
original sampling frequency


➡ the same process as above, but with use of  
10th order stable Chebyshev IIR filter with 1 Hz  
pass frequency


• Wavelet denoising 
➡ soft heuristic SURE thresholding and scaled noise option,  

on coefficients obtained at level 5 by sym8 wavelet

➡ minimax thresholding at level 5 by db5 wavelet


• Smoothing Splines
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Decomposition
Separating respiratory and cardiac components
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Decomposition
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Separating respiratory and cardiac components
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Best results obtained for moving average smoothing (with 1s window)


Impedance pneumography seemed to underestimate tidal volumes with 206 ml on 
average; average accuracy - 86.5%; calibrated with 30-second-lasting free breathing  




Dynamics correction
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Non-linear model for flow-related signals

• Simple linear modeling based on flow-related signals (as a reference)


• Neural network approach, trained individually:


➡ single hidden layer with 10 or 20 neurons 
➡ two hidden layers of 5 or 10 neurons


• Simple linear modeling and neural network correction, trained individually: 
➡ single hidden layer with 10 or 20 neurons 
➡ two hidden layers of 5 or 10 neurons


• Simple linear modeling and neural network correction, trained globally: 
➡ single hidden layer with 10 or 20 neurons 
➡ two hidden layers of 5 or 10 neurons
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Dynamics correction
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Non-linear model for flow-related signals
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Best results obtained for individually trained perceptron with 2 hidden layers (with 10 neurons) 

Average error level of flow parameters estimation - 20% (in comparison to 27.5% for linear modeling); 
using fixed breathing calibration 
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Detect motion artefacts in  
impedance pneumography signals

Objective 2



Methodology
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Study group - 24 students (12 females and 12 males)

Females Males

Average SD Average SD

Weight [kg]   58.6 5.6   76.2 9.5

Height [cm] 168.2 6.2 178.8 5.6

BMI   20.7 1.6   23.9 3.3

Age   22.3 5.3   22.9 3.2



Proposed algorithm
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Raw IP signal

Motion 3-axis signals

Teager-Kaiser 
Energy Operator Aggregation TKEMoving average smoothing

40 milliseconds window

Moving average smoothing
48 milliseconds window

…

Moving average smoothing
1 second window

-||-

-||-

-||-

Summation of absolute 
derivatives of each axis MRD

Spectrogram estimation

Summation of frequency 
content for consecutive 

time portions

TKEspec

Final reasoning

Normalization

Interpolation

Envelope detection

TKEenv

THR

Normalization

Abbreviations:

• TKE - the sum of all Teager-Kaiser Energy operators 
• TKEspec - the signal being a processed TKE spectrogram

• TKEenv - the envelope of the original TKE signal 
• MRD - motion-related signal 
• THR - adaptive threshold, established from TKE, TKEspec and MRD

(Kaiser 1990)



Sample signals and results
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supine

Abbreviations:

• TKE - the sum of all Teager-Kaiser Energy operators 
• TKEspec - the signal being a processed TKE spectrogram

• TKEenv - the envelope of the original TKE signal 
• MRD - motion-related signal 
• THR - adaptive threshold, established from TKE, TKEspec and MRD

side prone side supine sitting sittingstanding



Classification results
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For the best strategy of threshold level establishing

Accuracy [%] 81.3

Cohen’s Kappa coefficient     0.63

Sensitivity [%] 80.9

Specificity [%] 81.6 
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Optimize sport training control by  
adding respiratory data

Objective 3



Methodology
Study group - Polish elite athletes

Minimum Average Maximum

Weight [kg]   49.1   78.6 151.0

Height[cm] 158.0 183.3 208.0

BMI   17.4   23.2   42.7

Age   16.0   24.6   40.0

Study before Olympic Games in Rio de Janeiro 2016: 32 females and 68 males
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Study protocol

5 minutes Free breathing Supine, then standing
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Input and output data
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• Parameters based on input data  
➡ Only tidal volume signal

➡ Only tachogram signal

➡ Both, linked


• Due to the domain 
➡ time

➡ frequency

➡ information


Output labels 
➡ I - moderate dynamic component during performance (wrestling)

➡ II - high dynamic component during performance (triathlon)



Classification methods
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• Recursive Partitioning (CART) 

• Random Forests 

• Support Vector Machines (SVM) 

• adaBoost 

• Generalized Boosted Regression Models (GBM)



The best set of parameters
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1. Absolute spectral content in the high-frequency band (0.15 - 0.4 Hz), 
extracted from the respiration signal


2. Average heart rate

3. Mutual information between signals aligned to mean sample entropy

4. Difference between the slope of the long axis of the fitted ellipse and  

the slope of the line of equivalence in a standard Poincare Plot

5. Distance from the center of the fitted ellipse to the line of equivalence  

in the standard Poincare Plot

6. Sample entropy of the cardiac signal

7. Absolute spectral content in the high-frequency band (0.15 - 0.4 Hz), 

extracted from the cardiac signal

8. Absolute spectral content in the very-low-frequency band (0 - 0.04 Hz), 

extracted from the respiration signal

9. Absolute cross-spectrum phase between breathing signal and HRV 

curve in the high-frequency band (0.15 - 0.4 Hz)

10. Relative spectral content in the high-frequency band (0.15 - 0.4 Hz), 

extracted from the cardiac signal

Established by dimensionality reduction algorithms



Classification results
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Accuracy Cohen’s Kappa

Recursive partitioning 0.666 0.333

Random forest 0.817 0.631

SVM 0.733 0.447

adaBoost 0.767 0.533

GBM 0.833 0.669



Classification results
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Accuracy Cohen’s Kappa

Cardiac set 0.633 0.267

Novel  
cardiac + respiratory set 0.833 0.669

Comparison of cardiac and cardiorespiratory set using GBM

Standard cardiac parameters utilized in sport medicine applications are:

• root-mean-square difference of successive normal R-R intervals (RMSSD);

• standard deviation of instantaneous R-R interval variability from Poincare plots,

• absolute cardiac spectral content in the high frequency (0.15 - 0.4 Hz)

(Plews et al., 2013; Bellenger et al., 2016)



Discussion
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• No athletes from group of low dynamic 
component during performance


• No reproducibility and trend analysis


• Lack of taking into account other 
parameters and psychological 
questionnaires collected before  
and after the Olympic Games

• Only 10 and 24 healthy and young 
participants in two studies


• Conducted in static conditions, 
without taking into account possible 
artefacts during natural functioning


• ECG analysis based only from  
single-lead configuration

Method verification Sport medicine application
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Main limitations of the study



Discussion
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• Development of new ambulatory devices for measuring 
impedance pneumography, ECG, movement, blood saturation 
and pulse wave data


• Quantitative assessment of the effects of various factors  
(inter-individual variability, body position, depth and  
frequency of respiration) on the accuracy of the method


• Evaluation of reproducibility of calibration coefficients


• Checking the configuration of electrodes proposed by  
Seppa et al. (2013) in static conditions in three body positions

Innovative contribution to the state-of-the-art



Discussion
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• Evaluation of various methods of IP signal decomposition  
for the estimation of tidal volume and cardiac function


• Development of non-linear correction technique using neural 
networks to improve the dynamics of flow-related signals


• Development of algorithm for detecting motion artefacts  
based on Teager-Kaiser energy operator and motion signal


• Evaluation of the ambulatory testing of respiratory activity in  
sport medicine application


• Proposing a set of known and new cardiorespiratory parameters 
to assess the athlete's profiling

Innovative contribution to the state-of-the-art
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