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Abstract— Heart activity, or at least heart rate variability,
is associated with body position. Our previous studies have
confirmed that impedance pneumography may be used to
record respiratory function, but the calibration coefficients for
this method depend on position. Data were collected from
24 students (12 male, 12 female), who alternated positions
between lying (on front, back, and right side), sitting and
standing. Signals from an attached iPhone’s internal sensors
(accelerometer, gyroscope, magnetometer) were recorded and
attitude relative to gravity was calculated. The signals were
subsequently segmented and marked. Five algorithms were
trained and cross-validated for different sensor combinations.
Without differentiation of sitting and standing, 100% accu-
racy was achieved using all algorithms. The classifier best
differentiating these two states was based on random forests,
with overall accuracy of 90%. Simple methods based on a
proposed hybrid classifier were tested for online measurement
without the need for signal segmentation, with 99% accuracy.
The prospect of the algorithms’ use in long-term studies
(particularly cardiorespiratory monitoring) was assessed.

I. INTRODUCTION

The effect of body position on respiratory [1], [2] and cardiac
function [3] is well established, but is rarely fully accounted
for in ambulatory monitoring (which implies concurrent,
automatic body position detection). Heart activity, e.g., heart
rate variability, tracked alongside body position, could im-
prove the physiological inference.

Besides affecting unconscious respiratory activity, body
position is also needed to provide accurate ventilation param-
eters for impedance pneumography (IP) in both laboratory
[4] and ambulatory [5] settings.

Substantial position-detection research is available. A
number of wearable sensors can be used to deduce the ori-
entations of the torso and limbs relative to each other and to
the ground surface. Inertial sensors consist of accelerometers,
which can provide orientation information when the direction
gravity is known and other accelerations are minimal, and
gyroscopes, which provide angular data more directly, but
are subject to drift [6]. Each of them may be employed for a
separate purpose [7], or they may be used jointly to calculate
attitude relative to the gravitation [6], [8].
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Laboratory studies with restricted body position may need
only one- or two-axis sensors, but tri-axial information is
needed for classification of a broader range of positions [7],
[9]. The static body positions normally identified (sitting,
standing, various lying ones) mostly involve the body’s
extension and a unique, perpendicular orientation of the
torso (sitting being the exception). A single sensor’s data
on the torso’s orientation is mostly sufficient. Sitting differs
primarily by the relative orientation of the thigh and can be
detected with a second sensor [10].

Once a three-dimensional vector has been obtained, posi-
tions can be identified from the vector’s orientation relative
to a classification model or with heuristic algorithms. Apart
from static positions, identification may focus on transitions
between positions or on patterns of non-transition move-
ments [11].

Studies have historically developed unique sensor setups
for this purpose, but a consumers increasingly possess
an alternative solution: smartphones. Recent generations of
phones contain an array of instruments including tri-axial
accelerometers, gyroscopes and magnetometers. Phone ac-
celerometers, in particular, have been verified in recognition
of simple activities [12] such as ambulation [13]. The broader
use and comparison of the aforementioned sensors is an area
of current development [14].

We employed a smartphone in choosing optimal sets
of sensors and classification methods for algorithms used
in long-term ambulatory and clinic-based monitoring for
determination of body position. Our aim was to assess
the accuracy of automatic position classification performed
without segmentation. Furthermore, we sought to consider
intermediate torso positions, which may have an indirect
effect on respiratory function as measured using impedance
pneumography.

This paper is organized as follows. Equipment, protocol,
and analysis process are described in Methods. The experi-
mental and analysis Results are followed by their Discussion
and resulting Conclusions.

II. METHODS

A. Subjects and Measurements

We studied 24 healthy students, 12 female and 12 male,
both groups aged 19-23. All were informed of the aim and
protocol of the study and gave written informed consent. We
complied with the Declaration of Helsinki on research on
humans.

An iPhone 4 was used to measure motion signals using
the following embedded sensors:
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• 3-axis accelerometer (STM LIS331DLH ±2g range,
1mg/digit sensitivity),

• 3-axis gyroscope (STM L3G4200D ±250dps range,
8.75mdps/digit sensitivity),

• 3-axis magnetometer (AKM AK8975 ±1200µT range,
0.3µT/digit sensitivity).

We used a mobile application to record signals from
the three sensors and calculate attitude (expressed as pitch
around the x-axis, roll around the y, and yaw around the
z) [15]. The sampling frequency was set to 200Hz. Time
jitter was observed, even with the phone in airplane mode.
Piecewise Cubic Hermite interpolation was performed to
obtain correctly sampled data for further analysis. The phone
was affixed with a belt around the torso, as shown in Fig. 1.

Fig. 1. The method of smartphone arrangement during measurement.

B. Protocol and Analysis

Each subject assumed a series of positions in the following
order: supine (lying on back)→ lying on right side→ prone
(lying on front) → on right → supine → sitting → standing
→ sitting → supine → on right → prone → on right →
supine→ sitting→ standing→ sitting→ supine. There was
a pause of a few seconds between transitions. Subjects were
asked to establish and change body positions as naturally as
possible.

The main purpose of the analysis was to provide a
method for classification of body position during collection
of data associated with respiratory and cardiac activity. We
performed a preparation consisting of:

• manual review of segmentation of the body positions
(supine, lying on right side, prone, sitting, standing),

• calculation of parameters (particularly the mean) for
each segment for all signal axes (yielding 12 means),

• preparation of a matrix of parameters, ultimately divided
into training (70

We then evaluated 5 classification techniques for accuracy
and the viability of limiting the number of sensors used:

• Manual decision tree, based on hierarchically set thresh-
olds for input parameters, manually established through
exploratory data analysis. In practice, it consisted of
deriving mean vectors for each position from training
data and selecting the position that yielded the largest
vector product for a given set of sensor values.

• Automatic decision tree, including hierarchical thresh-
olds for input parameters, however determined automat-
ically, based on all provided dataset, using the rpart R
package [16].

• Tree boosting - an initially weak classifier is repeatedly
re-weighted with training data, allowing voting for the
best classifier. On each iteration, the weights in the
decision tree change. This was performed with the train
function in the caret R package [17].

• Random forests, which output the mode of classes
resulting in a large number of individually and randomly
set (differently seeded) trees. They correct overfitting
which may occur in the simple decision tree algorithm.
All calculations employed the randomForest R package
[18].

• Multilayer perceptron with input, hidden, and output
layers, with sigmoid activation functions and bias or
weights of the connections established during a su-
pervised back-propagation procedure (algorithm deliv-
ered by Matlab’s Neural Network Toolbox) [19]. In
a smartphone application, the learned model might be
implemented as a set of weight matrices related to the
perceptron configuration.

All algorithms had tuned settings, which are described in
the Results section.

Sitting and standing are difficult to differentiate based
only on the mean value of current signals from the torso.
We proposed a more sophisticated method using correlation
analysis and pattern-finding, based on the observation that
getting up and sitting down have similar shapes for various
axes, various sensors, and for all tested subjects.

The hybrid classifier consisted of two parts. The first
worked with the signals’ mean values for consecutive over-
lapping time windows (we tested windows from 20ms to 1s
with overlap from 0% to 50%), applying the first algorithm
(ignoring the distinction between sitting and standing). The
second employed pattern recognition. The algorithm calcu-
lated the vector of the 3-axis signals, compared it with the
stand-up sample, and sought the specific shapes (from which
the beginnings of stand-up and sit-down could be found)
during the sitting/standing phase.

We also proposed methods for smoothing outputs using
median filters to remove brief, erroneous indications not
coinciding with body position changes.

The quality of hybrid classification was assessed by com-
paring it with the manual labeling of all raw data segments,
for windows which fit entirely within a segment. Assessment
was carried out for the most effective sensor combination
identified for the first algorithm.

Signal processing and calculations employed MATLAB.
All statistical analyses were carried out with R and corre-
sponding R packages [20].

III. RESULTS

The overall accuracies of classifiers applied to the entire set
of sensors (excepting Attitude for Manual Decision Trees)
are presented in Table I.

The automatic methods achieved superior accuracy, above
90% and varying by only 0.6% among themselves. The best
of these, random forests, was applied for checking single
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sensors’ classification accuracy. The results are provided in
Table II.

The best result was obtained for the gyroscope. Fig. 2
shows the sample gyroscope-related signal obtained for one
subject.

The results of the classification are presented in Table III
in the form of a confusion matrix where rows correspond
to the algorithm’s prediction and columns to the reference
classes.

TABLE I
OVERALL ACCURACIES FOR THE CLASSIFIERS

Classifier Accuracy
Manual Decision Tree 82.5%
Automatic Decision Tree 90.8%
Boosting with Trees 90.7%
Random Forests 91.3%
Multilayer perceptron 91.1%

TABLE II
CLASSIFICATION ACCURACIES FOR RANDOM FOREST CLASSIFIER WITH

SINGLE-SENSOR INPUTS

Signal source Accuracy
Accelerometer 30.0%
Gyroscope 84.2%
Magnetometer 82.5%
Attitude calculation 73.3%

TABLE III
CONFUSION MATRIX FOR GYROSCOPE RANDOM FOREST

CLASSIFICATION

Reference
Prediction Supine Side Prone Sitting Standing
Supine 36 0 0 0 0
Side 0 28 0 0 0
Prone 0 0 14 0 0
Sitting 0 0 0 16 12
Standing 0 0 0 7 7

Using a simple vector-product condition algorithm, 4
states (sitting and standing combined into one) were differ-
entiated with 100% accuracy based only on gyroscope data.
Nearly equal accuracy was achieved with the magnetometer,
but the gyroscope is more reliable as measured magnetic
field vectors are affected by other factors besides subject
orientation. An accelerometer outputting proper acceleration
might match these outcomes.

We provided a method for distinguishing sitting and stand-
ing based on cross-correlation with the Euclidean norm of
all gyroscope axes and the pattern signals. The curves taken
into account are presented in Fig. 3.

Based on its accuracy in whole-segment classification,
the gyroscope axes’ data were used for the time-window
portion of the hybrid classifier. This combination was found
to be effective for distinguishing the basic positions. Little
variation in accuracy was found for different window lengths;
one subject’s accuracy remained only 92.7%, while all others
remained over 95%, and a majority over 99%. Longer

Fig. 2. Sample 3-axis gyroscope signal for half of the session performed
by one subject, with annotations; X axis on top, Y in the middle.

Fig. 3. Cross-correlation between the signal and the pattern representing
sitting-to-standing position change, with an indication of the characteristic
evolutions; the Euclidean norm of the gyroscope axes is colored in blue,
the correlation signal in red.

windows lead to 100%, which may have been due to the
number of considered windows decreasing (from thousands
to a hundred) and the smoothing of any brief movements that
may dominate a short window. We obtained a mean accuracy
of 99.1% for a 100ms window.

IV. DISCUSSION

A. Smartphone-based measurements

From an ambulatory point of view, the obtained data con-
stitute very good approximations of body position. Regret-
tably, the default signals returned by the phone accelerometer
indicate acceleration relative to normal gravity and cannot
alone indicate orientation. It seems that raw accelerometer
signal could provide better results than those presented; [12]
used raw accelerometer and gyroscope data with a multi-
layer perceptron to obtain 93% accuracy for a wide range of
activities.

The tests conducted using a smartphone allow quick,
systematic checking of the feasibilities of motion sensor sets,
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especially for the rarely used magnetometer. Data from the
magnetometer seem less reliable, being subject to noise and
somewhat divorced from the body’s mechanics. Therefore, it
seems that the use of a magnetometer increases system com-
plexity without providing additional value for body position
classification.

B. Classification

A single well-adapted sensor is sufficient for differen-
tiation of perpendicular orientations of the phone. This is
consistent with works such as [10], where a neural network
achieves 93% accuracy with accelerometer data alone. Dis-
tinguishing between sitting and standing with only a torso-
mounted sensor is difficult, as these have found; confusion
stems from similarly-oriented positions and activities.

The automatic methods used all available data from all
sensors, yet the best decreased sitting/standing misidentifi-
cation by less than half. As in [9], the benefits of multiple
torso sensor types are limited - better differentiation based
on short-term data requires a sensor located in the area most
affected by change in position (the thigh). As additional
sensor sites increase cost and inconvenience, we did not
investigate this approach. Position-characteristic activities
(walking, leaning in various directions, prolonged immobil-
ity) and transition data (net vertical acceleration, tilting for
balance) may be used to infer the dominant position from
torso-based data.

Nevertheless, real-time implementations of the presented
algorithms could yield high accuracy, at least for healthy
people. Sickness and age result in noisier signals and would
probably degrade the results. The robustness of the algo-
rithms in this regard will be checked in upcoming investiga-
tions.

C. Intermediate body positions

In contrast to automatic methods able to tailor their clas-
sification sets to the training data, the manually developed
method based on vector alignment could be adapted to return
the top matches and their percentage shares of total response.
This matters in an ambulatory setting where intermediate
body positions may be adopted. While oriented partway
between typical positions, the lungs may exhibit intermediate
respiratory parameters. An intermediate calibration coeffi-
cient for impedance pneumography could be determined via
a weighted average of those positions.

We plan to investigate these matters, including dynamic
states and conditions imitating natural functioning.

V. CONCLUSIONS

We emphasized the need to synchronize information about
subject body positions during cardiorespiratory measure-
ments (especially when using impedance pneumography to
record ventilation). A smartphone was used to investigate
combinations of accelerometer, gyroscope, magnetometer,
and various algorithms for body position classification.

The proposed hybrid classifier based on random forests
and pattern-associated cross-correlation analysis allows de-

tection of body positions without prior segmentation. Overall
classification accuracy was 99.1% for a 100ms gyroscope
window with 50% overlap.

A body position detection system should augment each
cardiorespiratory system used for ambulatory diagnostics, as
position is significant from a physiological perspective.
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