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Abstract

This study investigates the quality of peak oxygen consumption (VO2peak) prediction based

on cardiac and respiratory parameters calculated from warmup and submaximal stages of

treadmill cardiopulmonary exercise test (CPET) using machine learning (ML) techniques

and assesses the importance of respiratory parameters for the prediction outcome. The

database consists of the following parameters: heart rate (HR), respiratory rate (RespRate),

pulmonary ventilation (VE), oxygen consumption (VO2) and carbon dioxide production

(VCO2) obtained from 369 treadmill CPETs. Combinations of features calculated based on

the HR, VE and RespRate time-series from different stages of CPET were used to create 11

datasets for VO2peak prediction. Thirteen ML algorithms were employed, and model perfor-

mances were evaluated using cross-validation with mean absolute percentage error

(MAPE), R2 score, mean absolute error (MAE), and root mean squared error (RMSE) calcu-

lated after each iteration of the validation. The results demonstrated that incorporating respi-

ratory-based features improves the prediction of VO2peak. The best results in terms of R2

score (0.47) and RMSE (5.78) were obtained for the dataset which included both cardiac-

and respiratory-based features from CPET up to 85% of age-predicted HRmax, while the

best results in terms of MAPE (10.5%) and MAE (4.63) were obtained for the dataset con-

taining cardiorespiratory features from the last 30 seconds of warmup. The study showed

the potential of using ML models based on cardiorespiratory features from submaximal

tests for prediction of VO2peak and highlights the importance of the monitoring of respiratory

signals, enabling to include respiratory parameters into the analysis. Presented approach

offers a feasible alternative to direct VO2peak measurement, especially when specialized

equipment is limited or unavailable.
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1. Introduction

Peak oxygen consumption (VO2peak) obtained through cardiopulmonary exercise test (CPET)

is the popular measure of cardiorespiratory fitness [1]. It is a reliable predictor of cardiac

events [2, 3], as well as lung cancer [4] and liver transplantation survival [5] and risk of postop-

erative complications [6]. Moreover, VO2peak is a predictor of sport performance [7–9] and

physical task performance during spaceflight [10]. Although CPET is the most reliable form of

test, it is costly, requires specialized personnel and advanced equipment [11].

While conducting CPET, heart rate (HR) data are usually obtained through electrocardiog-

raphy (ECG), while respiratory rate (RespRate) and pulmonary ventilation (VE) are gathered

using tight-fitting masks. Nevertheless, this data can be acquired with relative ease, using heart

rate monitors or smartwatches in case of HR, and impedance pneumography (IP) in case of

RespRate and VE [12, 13]. Moreover, CPET is physically demanding as assumes the partici-

pants’ exhaustion and thus it is contraindicated for patients with acute myocardial infarction,

unstable angina, uncontrolled arrhythmia causing symptoms or hemodynamic compromise,

uncontrolled asthma, and other pathological conditions [11]. Maximal cardiopulmonary exer-

cise test might also interfere with an athletes training program [14].

Actually, due to: a) the growing development of aforementioned measurement devices, b)

availability of simply field-based tests such as incremental shuttle walk test [15, 16] and c) new

statistical prediction models and equations, clinicians and/or researchers are able to estimate

VO2peak, and/or VO2max (it is however not the subject of this study), based on selected parame-

ters without performing maximal CPET [17–22]. Unfortunately, estimated VO2peak using, e.g.,

only 6-min Walk Test distance demonstrated poor agreement with measured VO2peak from a

CPET [23]. Addition of other data such as demographic, anthropometric, and functional char-

acteristics improved the accuracy of VO2peak estimate based on walking tests at least in elderly

patients with stable coronary artery disease (model with all variables explained 73% of VO2peak

variance) [24]. Thus, estimation of peak oxygen consumption based on combination of demo-

graphic factors and cardiac parameters obtained during submaximal (or even not) physical

effort is possible, however, may be biased.

Reliable and accurate estimation of VO2peak without performing maximal CPET may

require more input physiological data to perform more sophisticated analyses. Thus, the

development of new prediction models or equations, which will be able to accurately esti-

mate VO2peak, and/or VO2max, and will not relies on performing maximal CPET, is still

ongoing [18, 25]. In recent years with the growth of the popularity of ML tools incorporated

during the data analysis phase, those techniques were also utilized for the prediction of VO2

kinetics and VO2max [26, 27]. ML models were also used by Szijarto et al. for prediction of

VO2peak based on the anthropometric data and 2D echocardiography (2DE) [28]. This

approach was more accurate than a model based on anthropometric factors, however, it

required performing a 2DE examination with sophisticated equipment and a trained physi-

cian. Importantly, not only the model or prediction algorithm might be important in terms

of the prediction accuracy, but also the features used for the training. There are existing

studies utilizing respiratory rate and ML for prediction of oxygen uptake dynamics during

CPET [29–31]. However, to the best of our knowledge, there have been no previous studies

utilizing features from cardiorespiratory time-series obtained from submaximal CPET, for

the prediction of VO2peak using ML models.

The aim of this paper was hence to investigate the quality of VO2peak prediction by models

based on cardiac and respiratory features obtained from different stages of CPET. Addition-

ally, we assessed the importance of respiratory-based features included in the models for

VO2peak prediction.
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2. Materials and methods

2.1. Data and study population

The study was performed on the publicly available database of cardiorespiratory time-series

acquired during treadmill maximal cardiopulmonary exercise tests presented by Mongin
et al. [32, 33]. The database comprises 992 recordings from experiments undertaken among

amateur and professional athletes in the Exercise Physiology and Human Performance Lab

of the University of Málaga between 2008 and 2018 with two types of protocols: a continu-

ous increase of treadmill speed and a graded approach. In the database, one may find two

forms of protocols on the treadmill continuous (ramping) and step-by-step incremental

effort [32, 33]. Discussing the consistency of the analysis, we decided to limit our study only

to experiments with continuous increase of the speed. In general, the protocol has: warmup

lasting 8–10 minutes at 5km/h (recording covers only about two last minutes), incremental

effort with a 1km/h/min speed increase and recovery. In the latter phase, the treadmill

speed was set back to the initial 5 km/h speed [33]. The length of recordings from warmup

differs between cases but was satisfactory for our modeling purposes. During recovery, sub-

jects were asked to walk. Participants were instructed to go beyond exhaustion and the test

was considered maximal if the increase of VO2 was less than 2.1 mL/kg/min between suc-

cessive stages. Then the effort test was stopped “to avoid the vasovagal syncope” [32, 33] and

the recovery started. The study was conducted according to the principles of the Declaration

of Helsinki, the study protocol was approved by the Research Ethics Committee of the Uni-

versity of Málaga, written informed consent was obtained from the participants and all the

data were analyzed anonymously.

During each test, the following cardiorespiratory time-series were acquired: heart rate

(HR), respiratory rate (RespRate), pulmonary ventilation (VE), oxygen uptake (VO2) and car-

bon dioxide production (VCO2). Data were acquired on a breath-to-breath basis. HR was

monitored via a 12-lead ECG (Mortara Instrument, Inc., USA), while respiratory signals were

obtained using the CPX MedGraphics gas analyzer system (Medical Graphics Corporation,

USA) [32].

Participants between 18 and 40 years old were chosen for the analysis reducing the sam-

ple size to 692. Tests only with continuous increasing speed were selected in order to obtain

more consistent conditions along the study population. In result, 485 recordings have left.

Next, subjects who were determined as outliers based on the 1.5 interquartile range method

in terms of weight, height, and VO2peak, with respect to the given sex, were excluded from

the study, limiting to 462 recordings. Furthermore, the obtained data was visually evaluated

in order to discard measurements during which there were visible artefacts in HR acquisi-

tion (e.g., sudden drop of over 30 bpm or lack of continuity of HR time-series during CPET

probably due to electrode detachment); ultimately 369 recordings became background for

the analysis. The final recordings belong to 327 unique subjects (42 subjects had more than

one test) including 275 men and 52 women. The demographic summary of the final group

is presented in Table 1.

Table 1. Descriptive statistics of the study population.

Age [years] Height [cm] Weight [kg] BMI VO2peak [ml/min/kg]

Men 27.3 ± 5.8 (18.0–39.8) 177.4 ± 6.3 (160.5–193.0) 76.6 ± 8.3 (55.3–97.0) 24.3 ± 2.2 (17.9–31.4) 47.7 ± 7.5 (28.9–67.3)

Woman 26.9 ± 6.3 (18.0–40.0) 165.2 ± 6.1 (154.0–178.0) 62.2 ± 8.2 (46.0–83.0) 22.8 ± 2.3 (18.0–29.6) 38.1 ± 6.3 (24.8–53.8)

All 27.3 ± 5.9 (18–40) 175.5 ± 7.6 (154.0–193.0) 74.5 ± 9.7 (46.0–97.0) 24.1 ± 2.3 (17.9–31.3) 46.3 ± 8.1 (24.8–67.3)

https://doi.org/10.1371/journal.pone.0291706.t001
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2.2. Modeling

Based on the aforementioned dataset, we decided to investigate the quality of VO2peak predic-

tion from different stages of CPET based on cardiac and respiratory parameters, and to assess

the importance of respiratory-based features included in the modeling of VO2peak. For this

purpose, we utilized recorded time-series of HR, RespRate, and VE. VO2peak was determined

as the maximal value of the signal obtained after a 15-breath VO2 moving average window

according to the recommendation presented by Robergs et al. [34].

As features for ML models, basic statistics such as mean, standard deviation, maximal and

minimal value, median, 25th and 75th quantile, skewness, kurtosis, coefficient from linear

regression, impulse and shape factors were calculated for HR, RespRate, and VE, for a given

stage of the maximal CPET. On this basis, 11 datasets were created based on different combi-

nations of parameters and CPET stages, as presented in Table 2. Our research is focused on

the submaximal stage from the cardiopulmonary exercise test, which equals 85% of the maxi-

mal measured and age-predicted HRmax as a threshold. Studied value of HR termination is

commonly used in submaximal testing [35–37]. We also used both actual HRmax obtained dur-

ing the treadmill cardiopulmonary exercise test, and age-predicted HRmax (220-age) in order

to provide insights about the utility of the prediction of VO2peak in submaximal tests without

prior knowledge about the value of HRmax for a given subject. The example plot of the signals,

alongside the threshold for all the stages of the CPET for which the features were calculated, is

presented in Fig 1.

The 10-fold cross-validation (CV) was used to assess the accuracy of the prediction. In each

iteration, standardization of the non-categorical features based on the mean and standard devia-

tion from the training dataset was performed. The only feature that was not standardized was par-

ticipants’ sex: -1 was assigned to male, and 1 to female subjects. Different ML algorithms,

commonly used for regression problems, were utilized: Linear, Lasso and Ridge Regression, Ran-

dom Forest, XGBoost, Multilayer perceptron, Epsilon-Support Vector Regression, Bayesian Ridge

Regression, Bayesian Automatic Relevance Determination (ARD) Regression, Gaussian Process

Regression, Gradient Boosting for Regression, Huber Regression and Theil-Sen Estimator [38–

40]. The hyperparameter tuning was performed for each algorithm using the grid-search tech-

nique. In each iteration of the validation, metrics like mean absolute percentage error (MAPE), R2

score, mean absolute error (MAE), root mean squared error (RMSE) and Cohen’s f2 for effect size

were calculated. The best model for each dataset was determined based one the lowest MAPE

Table 2. Characteristics of all datasets with an indication of features belonging to individual datasets.

Dataset Subjects’

demography (age,

weight, height, sex)

HR features

from the last 30

s of warmup

RespRate and VE

features from the

last 30 s of warmup

HR features

from CPET up

to 85% of HRmax

RespRate and VE

features from CPET

up to 85% of HRmax

HR features from

CPET up to 85% of

age-predicted HRmax

RespRate and VE

features from CPET up

to 85% of age-predicted

HRmax

D1 +

D2 + +

D3 + + +

D4 + +

D5 + + +

D6 + + +

D7 + + + + +

D8 + +

D9 + + +

D10 + + +

D11 + + + + +

https://doi.org/10.1371/journal.pone.0291706.t002
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Fig 1. Typical representation of the time-series for participants with selected fragments used in the analysis. Part

A presents the linearly increasing treadmill speed, part B heart rate fluctuations, part C respiratory rate and part D

pulmonary ventilation kinetics. The segment between the blue and orange dashed lines is the last 30 seconds of

warmup. The segment between the orange and green lines corresponds to the section of CPET up to 85% of the age-

predicted HRmax. Finally, the segment between the orange and red lines corresponds to the increasing workload in

CPET up to 85% of the measured HRmax, which is marked with a red circle on the HR plot.

https://doi.org/10.1371/journal.pone.0291706.g001
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score (which was chosen arbitrarily) obtained from the cross-validation. For the best model, Lin

concordance correlation coefficient was calculated, and results were visualized as the dependency

between predicted and actual values of VO2peak and as Bland-Altman plot. Moreover, the differ-

ence in the values of metrics for male and female was tested.

Metrics obtained from all datasets were pairwise compared using the Wilcoxon signed-

rank test. The significance level was set to 0.05. For the calculations, Python 3.9.13 was used.

The whole modeling pipeline is presented in Fig 2.

2.3. Explainable AI

In order to investigate the importance of the individual features used for ML modeling,

explainable artificial intelligence (XAI) tools were applied. For this purpose, the Dalex Python

package was used [41]. During each iteration of the cross-validation, Shapley values and

model-level variable importance based on drop-out loss values were calculated on the test set.

After the whole cross-validation, all Shapley values for each sample and feature, as well as

mean variable importance values were visualized. For the variable importance, model_parts
function of dalex.Explainer class was used. 30 permutation rounds were performed on each

variable with MAE as a loss function and no data sampling (argument N was equal to None)
due to the small number of samples.

3. Results

The metrics obtained for the best algorithm in terms of the lowest MAPE from the cross-vali-

dation for each dataset are presented in Table 3 alongside the model names. The violin-plots of

the obtained metrics for each dataset were visualized in Fig 3. The p-values from the Wilcoxon

signed-rank test from a pairwise comparison of the metrics are presented in Fig 4.

The lowest MAPE and MAE (10.51% and 4.63, respectively) were obtained for dataset D11

(demographic data along with cardiac and respiratory features from the last 30 seconds of

warmup and CPET up to 85% of age-predicted HRmax), while the lowest RMSE and highest R2

score (5.78 and 0.47, respectively) were obtained for D9 (demographic data along with cardiac

and respiratory features from CPET up to 85% of age-predicted HRmax). The worst prediction

of VO2peak in terms of all metrics was achieved by using the D1 (demographic data) dataset.

Results obtained for D11 were statistically significantly better in terms of all metrics than

results for all the rest of the datasets excluding D9 as presented in Fig 4. Regarding R2 score

and RMSE metrics, datasets that included respiratory-based features from the part of CPET

(irrespective of HRmax determination, whether measured or estimated) showed statistically sig-

nificant superiority over datasets lacking features based on VE and respiratory rate during the

corresponding period. Similarly, for MAPE and MAE, datasets containing respiratory-based

features calculated up to 85% of age-predicted HRmax demonstrated significantly better met-

rics than datasets without such features. The effect size was large (Cohen’s f2>0.35) [42] for all

iterations of cross-validations in the case D4, D5, D7, D8, D9 and D11.

The measured values of VO2peak and values predicted for the dataset that obtained the low-

est MAPE score (D11) were visualized in Fig 5. The Lin concordance correlation coefficient

between predicted and measured VO2peak values was 0.66. The Bland-Altman plot for this

dataset is presented in Fig 6. There was no statistically significant difference in case of metrics

obtained for male and female subjects. The results of the comparison of metrics obtained for

male and female are presented in Table 4.

As the smallest mean MAPE was obtained for D11, Shapley values and feature importance

were visualized for this dataset in Figs 7 and 8, respectively. The discussion of the XAI results

can be found in the next section.

PLOS ONE Prediction of VO2peak using cardiorespiratory parameters from warm-up and submaximal stage of treadmill CPET

PLOS ONE | https://doi.org/10.1371/journal.pone.0291706 January 10, 2024 6 / 19

https://doi.org/10.1371/journal.pone.0291706


4. Discussion

Considering the features calculated from HR, VE, and RespRate time-series (attainable with-

out the specialized equipment used in CPET), it is possible to predict VO2peak from a submaxi-

mal test relying on age-predicted HRmax, achieving a mean absolute percentage error of

10.51% (for D11), using Bayesian ARD regression method. The addition of respiratory-based

parameters resulted in an improvement of prediction compared to datasets based solely on the

Fig 2. Modeling pipeline applied for each dataset and algorithm.

https://doi.org/10.1371/journal.pone.0291706.g002
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corresponding stage of the treadmill cardiopulmonary exercise test in 4 out of 5 cases in terms

of R2 score and RMSE, and 2 out of 5 cases in terms of MAPE and MAE. When limiting tread-

mill cardiopulmonary exercise test to 85% of age-based HRmax, the inclusion of features based

on VE and RespRate improved the prediction in terms of all the specified metrics. The fact

that the best results were achieved for the dataset considering 85% aged-based HRmax and

parameters obtained from easily accessible time-series indicates the possibility of using the

presented method in clinical practice to determine VO2peak without the prior knowledge of the

actual HRmax value and the necessity to perform a maximal treadmill cardiopulmonary exer-

cise test.

Obtaining VO2peak from maximal CPET might be costly, time-consuming and in some

cases impossible or contraindicated to carried out due to observed cardiac or pulmonary dys-

function, musculoskeletal diseases, or strict training programs. Therefore, there is a growing

interest in the prediction of VO2peak and/or VO2max from submaximal tests [14, 43–49]. Our

study focused on investigating ML algorithms to predict VO2peak with the set of features,

which could be obtained using simpler techniques than commonly used spirometry, and the

significance of incorporating respiration into the prediction process. The presented results are

similar or superior compared to some other presented VO2peak prediction methods like WFI

VO2peak prediction equation, deep-learning model based on 2DE, or regression models from

PACER 20-m shuttle run [19, 28, 50–53]. However, in the existing literature, there are also

techniques, which managed to obtain better performance like regression models based on sub-

maximal exercise test protocol using a total body recumbent stepper [54–56]. Nonetheless, in

those studies more heterogeneous groups of patients were present in terms of age or health sta-

tus (patients after heart failure or individuals with low to moderate risk of cardiovascular dis-

eases). Further improvement of the prediction of VO2peak might be achieved by increasing

sample size, and inclusion of other parameters based on the raw signals (especially ECG) like

HRV and parameters from information and causal domain [57–60].

Another notable aspect of the study was the utilization of XAI tools, specifically Shapley val-

ues and model-level variable importance, to obtain insights into the feature importance for

prediction. For most datasets (including D9 and D11, which produced the best results) Bayes-

ian ARD Regression model was used, which has an ability to automatically determine the rele-

vance of each feature, effectively pruning irrelevant or redundant information, while

accentuating the impactful variables [61]. In our analysis, we found that the top five most influ-

ential features were consistent between Shapley values and variable importance. The most

Table 3. Mean and standard deviation of metrics from cross-validation for each dataset for the model which resulted in the lowest MAPE for the given dataset. The

highest metric values were highlighted.

MAPE [%] R2 MAE [ml/min/kg] RMSE [ml/min/kg] Cohen’s f2 Model

D1 12.52 ± 2.11 0.26 ± 0.09 5.50 ± 0.80 6.84 ± 0.81 0.37 ± 0.17 Ridge regression

D2 11.95 ± 1.84 0.31 ± 0.07 5.24 ± 0.84 6.61 ± 0.71 0.47 ± 0.16 Huber regression

D3 11.63 ± 1.84 0.34 ± 0.05 5.13 ± 0.75 6.45 ± 0.65 0.53 ± 0.12 Bayesian ARD regression

D4 11.51 ± 1.72 0.36 ± 0.06 5.07 ± 0.68 6.36 ± 0.64 0.58 ± 0.15 Bayesian ARD regression

D5 10.86 ± 1.23 0.44 ± 0.06 4.78 ± 0.52 5.95 ± 0.51 0.80 ± 0.19 Bayesian ARD regression

D6 11.67 ± 1.72 0.34 ± 0.07 5.15 ± 0.69 6.46 ± 0.64 0.53 ± 0.15 Lasso regression

D7 11.10 ± 1.26 0.42 ± 0.08 4.90 ± 0.53 6.07 ± 0.50 0.74 ± 0.23 Bayesian ARD regression

D8 11.36 ± 1.49 0.38 ± 0.06 4.99 ± 0.61 6.29 ± 0.59 0.61 ± 0.14 Bayesian ARD regression

D9 10.54 ± 1.20 0.47 ± 0.06 4.64 ± 0.49 5.78 ± 0.50 0.91 ± 0.19 Bayesian ARD regression

D10 11.50 ± 1.49 0.36 ± 0.07 5.06 ± 0.62 6.37 ± 0.59 0.57 ± 0.16 Bayesian ARD regression

D11 10.51 ± 1.24 0.47 ± 0.07 4.63 ± 0.52 5.78 ± 0.52 0.91 ± 0.23 Bayesian ARD regression

https://doi.org/10.1371/journal.pone.0291706.t003
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impactful feature of the prediction was the maximal value of VE during the test, up to 85% of

age-predicted HRmax. Additionally, subjects’ weight and sex influenced the prediction results,

with higher VO2peak observed in lighter individuals and males compared to females. The

importance of weight as a predictor for VO2peak in the presented study was probably due to the

utilization of peak oxygen consumption in relation to mass and expressed in ml/min/kg,

which is in line with the results presented by Loftin et al. [62]. There are also multiple studies

Fig 3. Violin-plots of the calculated metrics for each dataset with the visualization of the metrics obtained in each

iteration of the 10-fold cross-validation. Black dots represent metrics obtained from datasets without respiratory-

based features, while red dots represent these that include such features.

https://doi.org/10.1371/journal.pone.0291706.g003
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Fig 4. The p-values from Wilcoxon signed-rank test from pairwise comparison of the metrics obtained from different datasets. P-values smaller than 0.05

are marked with a black background.

https://doi.org/10.1371/journal.pone.0291706.g004
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presenting the difference in VO2peak between male and female [63, 64], thus the influence of

the patients sex on the prediction seem to be natural. Notably, there was no significant differ-

ence between the metrics obtained for both sexes, indicating the robustness of the models in

this regard. Patients age was not among the most influential features, however a higher patients

age tend to result in the lower value of the predicted VO2peak, which seem to be in line with the

results of other studies [64, 65]. ML algorithms offer the advantage of processing and analyzing

vast amounts of data at incredible speed, enabling them to identify complex patterns and rela-

tionships that may not be captured by humans. Thus, ML allows for the extraction of informa-

tion on the influence of the almost unlimited number of features from big datasets on the

VO2peak values, which would be impossible just by human-based analysis. Notably, 13 out of

the 20 features with the highest Shapley values and 10 out of the 15 features with the highest

variable importance score were related to respiratory signals. Those findings seem to be in line

with results presented in other studies, where the importance of respiratory signals in the con-

text of oxygen consumption was presented [31, 66, 67]. The presented configuration offers the

benefit of avoiding monitoring O2 consumption and CO2 production through laboratory

device, instead allowing for the application of less sophisticated respiratory monitoring tech-

niques, such as IP. Simultaneous acquisition of both ECG and IP can be performed using e.g.,

Pneumonitor device, which was recently developed and designed for research in the fields of

physiology and sports medicine [12, 13, 68]. Thus, all the cardiorespiratory features under cur-

rent study could be obtained using Pneumonitor without any additional equipment. However,

it is important that the presented results are based on the CPET performed on a treadmill and

Fig 5. The plot of measured and predicted VO2peak values for dataset D11. The solid black line represents the function

where predicted value is equal to the measured one.

https://doi.org/10.1371/journal.pone.0291706.g005
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machine learning models training in this study should not be used on a data from tests per-

formed using other exercise modalities, as it influences the cardiorespiratory parameters [69].

Moreover, the profile of the study population in terms of age and fitness level of subjects

should be considered if applying the obtained models, as it has an influence on the VO2peak val-

ues [70].

There are several limitations of the study. First of all, the raw ECG/RR-intervals signals and

raw respiratory curves were unavailable, and thus more sophisticated parameters especially

from information and causal domains, which could provide additional insights into the pre-

dictive models could have not been calculated. Moreover, the sample size in this study was lim-

ited, as only 369 recordings from the initial database of 992 CPET recordings were used for

analysis after applying exclusion criteria based on outlier detection methods and visual inspec-

tion of the signals. Furthermore, the dataset was imbalanced in terms of patients’ sex as there

were 275 men and 52 women. A larger and more balanced dataset could prove beneficial for

ML model training. There was also lack of information about the amount of sport activity

undertaken by the participants, which might introduce inconsistency in the study population.

Moreover, the equation used for determination of age-predicted HRmax might be also treated

Fig 6. Bland-Altman plot of determined in CPET directly and predicted VO2peak values based on the results for dataset D11.

https://doi.org/10.1371/journal.pone.0291706.g006

Table 4. Mean and standard deviation of metrics from cross-validation for male and female for dataset D11 with p-value from Wilcoxon signed-rank test.

MAPE R2 MAE RMSE Cohens f2

Male 10.29 ± 1.30 0.35 ± 0.12 4.69 ± 0.58 5.86 ± 0.51 0.58 ± 0.29

Female 11.77 ± 2.03 -0.16 ± 1.24 4.25 ± 0.70 5.16 ± 1.13 0.43 ± 0.76

P-value 0.105 0.232 0.160 0.105 0.557

https://doi.org/10.1371/journal.pone.0291706.t004
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Fig 7. Shapley values obtained for dataset D11. Feature names are explained in the S1 Appendix.

https://doi.org/10.1371/journal.pone.0291706.g007
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as a limitation as there exist equations with smaller errors [71]. However, the equation used in

this study is the most popularity and characterized by simplicity of application. Additionally,

one approach of age-predicted HRmax calculation and one threshold of HRmax were intro-

duced. Some of these limitations could be overcome by the usage of the Pneumonitor device,

which allows for the simultaneous acquisition of raw ECG and IP signals [68]. Thus, the pul-

monary activity (including RespRate and VE) can be monitored without the usage of sophisti-

cated apparatus for gas analysis and tight-fitting masks may stress some groups of patients

Fig 8. Variable importance for dataset D11. Feature names are explained in the S1 Appendix.

https://doi.org/10.1371/journal.pone.0291706.g008
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(e.g., children). Future studies may explore the optimal percentage of HRmax and different

approaches of estimation of age-predicted HRmax. It would be also valuable to study the influ-

ence of the subjects’ physical activity level on the prediction accuracy as well as other than

treadmill forms of cardiopulmonary exercise tests in order to determine the optimal settings

for the prediction of VO2peak for clinical practice. The utility of the described method may also

depend on the reproducibility of the results, which need further testing. With high reproduc-

ibility, the method could be useful in clinical practice for e.g., tracking the changes of the CRF

during training camps of athletes without performing full CPET.

This study expands the discussion on predicting cardiorespiratory fitness by highlighting

the important role of submaximal testing and incorporating respiratory signals in the predic-

tion process. The presented analysis indicates that the inclusion of respiratory parameters

might improve the quality of the VO2peak prediction in a group of athletic subjects aged

between 18 and 40 years old when performing a submaximal test on a treadmill. The use of a

submaximal test based on age-predicted HRmax and the utilization of cardiological and respira-

tory parameters that can be obtained without specialized CPET equipment is an advantage of

the presented approach and facilitates its potential application in clinical practice.

Supporting information

S1 Appendix. List of feature names.

(DOCX)

Author Contributions

Conceptualization: Maciej Rosoł, Monika Petelczyc.

Data curation: Maciej Rosoł, Monika Petelczyc.

Formal analysis: Maciej Rosoł.

Methodology: Maciej Rosoł, Monika Petelczyc, Jakub S. Gąsior, Marcel Młyńczak.

Software: Maciej Rosoł.

Validation: Maciej Rosoł.

Visualization: Maciej Rosoł.

Writing – original draft: Maciej Rosoł.

Writing – review & editing: Maciej Rosoł, Monika Petelczyc, Jakub S. Gąsior, Marcel

Młyńczak.

References
1. Lee J, Zhang XL. Physiological determinants of VO2max and the methods to evaluate it: A critical

review. Vol. 36, Science and Sports. 2021.

2. Laukkanen JA, Rauramaa R, Salonen JT, Kurl S. The predictive value of cardiorespiratory fitness com-

bined with coronary risk evaluation and the risk of cardiovascular and all-cause death. J Intern Med.

2007; 262(2). https://doi.org/10.1111/j.1365-2796.2007.01807.x PMID: 17645594

3. Laukkanen JA, Kurl S, Salonen R, Rauramaa R, Salonen JT. The predictive value of cardiorespiratory

fitness for cardiovascular events in men with various risk profiles: A prospective population-based

cohort study. Eur Heart J. 2004; 25(16). https://doi.org/10.1016/j.ehj.2004.06.013 PMID: 15321701

4. Jones LW, Watson D, Herndon JE, Eves ND, Haithcock BE, Loewen G, et al. Peak oxygen consump-

tion and long-term all-cause mortality in nonsmall cell lung cancer. Cancer. 2010; 116(20). https://doi.

org/10.1002/cncr.25396 PMID: 20597134

PLOS ONE Prediction of VO2peak using cardiorespiratory parameters from warm-up and submaximal stage of treadmill CPET

PLOS ONE | https://doi.org/10.1371/journal.pone.0291706 January 10, 2024 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0291706.s001
https://doi.org/10.1111/j.1365-2796.2007.01807.x
http://www.ncbi.nlm.nih.gov/pubmed/17645594
https://doi.org/10.1016/j.ehj.2004.06.013
http://www.ncbi.nlm.nih.gov/pubmed/15321701
https://doi.org/10.1002/cncr.25396
https://doi.org/10.1002/cncr.25396
http://www.ncbi.nlm.nih.gov/pubmed/20597134
https://doi.org/10.1371/journal.pone.0291706


5. Bernal W, Martin-Mateos R, Lipcsey M, Tallis C, Woodsford K, McPhail MJ, et al. Aerobic capacity dur-

ing cardiopulmonary exercise testing and survival with and without liver transplantation for patients with

chronic liver disease. Liver Transplantation. 2014; 20(1). https://doi.org/10.1002/lt.23766 PMID:

24136710

6. Snowden CP, Prentis JM, Anderson HL, Roberts DR, Randles D, Renton M, et al. Submaximal cardio-

pulmonary exercise testing predicts complications and hospital length of stay in patients undergoing

major elective surgery. Ann Surg. 2010; 251(3). https://doi.org/10.1097/SLA.0b013e3181cf811d PMID:

20134313

7. Schabort EJ, Killian SC, St Clair Gibson A, Hawley JA, Noakes TD. Prediction of triathlon race time

from laboratory testing in national triathletes. Med Sci Sports Exerc. 2000; 32(4). https://doi.org/10.

1097/00005768-200004000-00018 PMID: 10776905

8. Billat VL, Demarle A, Slawinski J, Paiva M, Koralsztein JP. Physical and training characteristics of top-

class marathon runners. Med Sci Sports Exerc. 2001; 33(12). https://doi.org/10.1097/00005768-

200112000-00018 PMID: 11740304

9. Staib JL, Im J, Caldwell Z, Rundell KW. Cross-Country Ski Racing Performance Predicted by Aerobic

and Anaerobic Double Poling Power. J Strength Cond Res. 2000; 14(3).

10. Sutterfield SL, Alexander AM, Hammer SM, DIdier KD, Caldwell JT, Barstow TJ, et al. Prediction of

Planetary Mission Task Performance for Long-Duration Spaceflight. Med Sci Sports Exerc. 2019; 51

(8). https://doi.org/10.1249/MSS.0000000000001980 PMID: 30882564

11. Levett DZH, Jack S, Swart M, Carlisle J, Wilson J, Snowden C, et al. Perioperative cardiopulmonary

exercise testing (CPET): consensus clinical guidelines on indications, organization, conduct, and physi-

ological interpretation. Br J Anaesth. 2018; 120(3). https://doi.org/10.1016/j.bja.2017.10.020 PMID:

29452805

12. Mlynczak M, Zylinski M, Niewiadomski W, Cybulski G. Ambulatory Devices Measuring Cardiorespira-

tory Activity with Motion. In: BIODEVICES 2017 - 10th International Conference on Biomedical Elec-

tronics and Devices, Proceedings; Part of 10th International Joint Conference on Biomedical

Engineering Systems and Technologies, BIOSTEC 2017. 2017.

13. Młyńczak MC, Niewiadomski W, Zyliński M, Cybulski GP. Ambulatory impedance pneumography

device for quantitative monitoring of volumetric parameters in respiratory and cardiac applications. In:

Computing in Cardiology. 2014.

14. Petelczyc M, Kotlewski M, Bruhn S, Weippert M. Maximal oxygen uptake prediction from submaximal

bicycle ergometry using a differential model. Sci Rep [Internet]. 2023; 13(1):11289. Available from:

https://doi.org/10.1038/s41598-023-38089-7

15. Marsico A, Corso SD, de Carvalho EF, Arakelian V, Phillips S, Stirbulov R, et al. A more effective alter-

native to the 6-minute walk test for the assessment of functional capacity in patients with pulmonary

hypertension. Eur J Phys Rehabil Med. 2021; 57(4).

16. Alves R, Lima MM, Fonseca C, Dos Reis R, Figueiredo PH, Costa H, et al. Peak oxygen uptake during

the incremental shuttle walk test in a predominantly female population with Chagas heart disease. Eur J

Phys Rehabil Med. 2016;52(1).

17. Buttar KK, Saboo N, Kacker S. A Review: Maximal Oxygen Uptake (VO2 Max) and Its Estimation Meth-

ods. International Journal of Physical Education, Sports and Health. 2019; 6(6).

18. Lima LP, Leite HR, de Matos MA, Neves CDC, da Silva Lage VK, da Silva GP, et al. Cardiorespiratory

fitness assessment and prediction of peak oxygen consumption by Incremental Shuttle Walking Test in

healthy women. PLoS One. 2019; 14(2). https://doi.org/10.1371/journal.pone.0211327 PMID:

30730949

19. Selland CA, Kelly J, Gums K, Meendering JR, Vukovich M. A Generalized Equation for Prediction of VO

2peak from a Step Test. Int J Sports Med. 2021; 42(9).

20. Cureton KJ, Sloniger MA, O’Bannon JP, Black DM, McCormack WP. A generalized equation for predic-

tion of VO2peak from 1-mile run/walk performance. Med Sci Sports Exerc. 1995; 27(3). PMID: 7752874

21. Cooper KD, Shafer AB. Validity and Reliability of the Polar A300’s Fitness Test Feature to Predict

VO2max. Int J Exerc Sci. 2019; 12(4). PMID: 30899351

22. HERNANDEZ B, Roberts B, Kodidhi A, Roelle L, Miller N, Littell LM, et al. EVALUATING ACCURACY

OF ESTIMATED VO2MAX WITH WRIST WORN POLAR IGNITE COMPARED TO PEAK VO2 ON

FORMAL CARDIOPULMONARY EXERCISE TESTING IN HEALTHY AND FONTAN PEDIATRIC

PATIENTS. J Am Coll Cardiol. 2023; 81(8).

23. Chirico D, Davidson TW, Terada T, Scott K, Keast ML, Reid RD, et al. Using the 6-min walk test to moni-

tor peak oxygen uptake response to cardiac rehabilitation in patients with heart failure. J Cardiopulm

Rehabil Prev. 2020; 40(6). https://doi.org/10.1097/HCR.0000000000000517 PMID: 33031135

PLOS ONE Prediction of VO2peak using cardiorespiratory parameters from warm-up and submaximal stage of treadmill CPET

PLOS ONE | https://doi.org/10.1371/journal.pone.0291706 January 10, 2024 16 / 19

https://doi.org/10.1002/lt.23766
http://www.ncbi.nlm.nih.gov/pubmed/24136710
https://doi.org/10.1097/SLA.0b013e3181cf811d
http://www.ncbi.nlm.nih.gov/pubmed/20134313
https://doi.org/10.1097/00005768-200004000-00018
https://doi.org/10.1097/00005768-200004000-00018
http://www.ncbi.nlm.nih.gov/pubmed/10776905
https://doi.org/10.1097/00005768-200112000-00018
https://doi.org/10.1097/00005768-200112000-00018
http://www.ncbi.nlm.nih.gov/pubmed/11740304
https://doi.org/10.1249/MSS.0000000000001980
http://www.ncbi.nlm.nih.gov/pubmed/30882564
https://doi.org/10.1016/j.bja.2017.10.020
http://www.ncbi.nlm.nih.gov/pubmed/29452805
https://doi.org/10.1038/s41598-023-38089-7
https://doi.org/10.1371/journal.pone.0211327
http://www.ncbi.nlm.nih.gov/pubmed/30730949
http://www.ncbi.nlm.nih.gov/pubmed/7752874
http://www.ncbi.nlm.nih.gov/pubmed/30899351
https://doi.org/10.1097/HCR.0000000000000517
http://www.ncbi.nlm.nih.gov/pubmed/33031135
https://doi.org/10.1371/journal.pone.0291706


24. Mandic S, Walker R, Stevens E, Nye ER, Body D, Barclay L, et al. Estimating exercise capacity from

walking tests in elderly individuals with stable coronary artery disease. Disabil Rehabil. 2013; 35(22).

https://doi.org/10.3109/09638288.2012.759629 PMID: 23600709

25. Wiecha S, Kasiak PS, Szwed P, Kowalski T, Cieśliński I, Postuła M, et al. VO2max prediction based on

submaximal cardiorespiratory relationships and body composition in male runners and cyclists: a popu-

lation study. Löllgen H, Barton M, Löllgen H, Knechtle B, editors. Elife [Internet]. 2023; 12:e86291. Avail-

able from: https://doi.org/10.7554/eLife.86291 PMID: 37162318

26. Ashfaq A, Cronin N, Müller P. Recent advances in machine learning for maximal oxygen uptake (VO2

max) prediction: A review. Vol. 28, Informatics in Medicine Unlocked. 2022.

27. Hedge ET, Amelard R, Hughson RL. Prediction of oxygen uptake kinetics during heavy-intensity cycling

exercise by machine learning analysis. J Appl Physiol. 2023; 134(6). https://doi.org/10.1152/

japplphysiol.00148.2023 PMID: 37199779

28. Szijarto A, Tokodi M, Fabian A, Lakatos BK, Shiida K, Tolvaj M, et al. Deep-learning based prediction of

peak oxygen uptake in athletes using 2D echocardiographic videos. Eur Heart J Cardiovasc Imaging

[Internet]. 2023 Jun 1; 24(Supplement_1):jead119.244. Available from: https://doi.org/10.1093/ehjci/

jead119.244

29. Zignoli A, Fornasiero A, Ragni M, Pellegrini B, Schena F, Biral F, et al. Estimating an individual’s oxygen

uptake during cycling exercise with a recurrent neural network trained from easy-to-obtain inputs: A

pilot study. PLoS One. 2020; 15(3). https://doi.org/10.1371/journal.pone.0229466 PMID: 32163443

30. Amelard R, Hedge ET, Hughson RL. Temporal convolutional networks predict dynamic oxygen uptake

response from wearable sensors across exercise intensities. NPJ Digit Med. 2021; 4(1). https://doi.org/

10.1038/s41746-021-00531-3 PMID: 34764446

31. Wang Z, Zhang Q, Lan K, Yang Z, Gao X, Wu A, et al. Enhancing instantaneous oxygen uptake estima-

tion by non-linear model using cardio-pulmonary physiological and motion signals. Front Physiol.

2022;13. https://doi.org/10.3389/fphys.2022.897412 PMID: 36105296

32. Mongin D, Chabert C, Courvoisier DS, Garcı́a-Romero J, Alvero-Cruz JR. Heart rate recovery to assess

fitness: comparison of different calculation methods in a large cross-sectional study. Research in Sports

Medicine. 2023; 31(2).

33. Mongin D, Garcı́a-Romero J, Alvero-Cruz JR. https://physionet.org/content/treadmill-exercise-

cardioresp/1.0.1/. 2021. Treadmill Maximal Exercise Tests from the Exercise Physiology and Human

Performance Lab of the University of Malaga (version 1.0.1) PhysioNet.

34. Robergs RA, Dwyer D, Astorino T. Recommendations for improved data processing from expired gas

analysis indirect calorimetry. Sports Medicine. 2010; 40(2). https://doi.org/10.2165/11319670-

000000000-00000 PMID: 20092364

35. Noonan V, Dean E. Submaximal exercise testing: Clinical application and interpretation. Vol. 80, Physi-

cal Therapy. 2000. PMID: 10911416

36. Shushan T, Lovell R, Buchheit M, Scott TJ, Barrett S, Norris D, et al. Submaximal Fitness Test in Team

Sports: A Systematic Review and Meta-Analysis of Exercise Heart Rate Measurement Properties. Vol.

9, Sports Medicine—Open. 2023. https://doi.org/10.1186/s40798-023-00564-w PMID: 36964427

37. Leopold E, Tuller T, Scheinowitz M. A computational predictor of the anaerobic mechanical power out-

puts from a clinical exercise stress test. PLoS One. 2023; 18(5 MAY). https://doi.org/10.1371/journal.

pone.0283630 PMID: 37146031

38. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. 2016.

39. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learn-

ing in Python. Journal of Machine Learning Research. 2011;12.

40. Chollet F. Keras (2015). URL http://keras.io. 2017;

41. Baniecki H, Kretowicz W, Piatyszek P, Wisniewski J, Biecek P. dalex: Responsible machine learning

with interactive explainability and fairness in python. Journal of Machine Learning Research. 2021; 22.

42. Lorah J. Effect size measures for multilevel models: definition, interpretation, and TIMSS example.

Large Scale Assess Educ. 2018; 6(1).

43. Mart MF, Ely EW, Tolle JJ, Patel MB, Brummel NE. Physiologic responses to exercise in survivors of

critical illness: an exploratory pilot study. Intensive Care Medicine Experimental. 2022; 10(1). https://

doi.org/10.1186/s40635-022-00461-8 PMID: 36008625

44. Baldasseroni S, Silverii MV, Pratesi A, Burgisser C, Orso F, Lucarelli G, et al. Cardiac Rehabilitation in

Advanced aGE after PCI for acute coronary syndromes: predictors of exercise capacity improvement in

the CR-AGE ACS study. Aging Clin Exp Res. 2022; https://doi.org/10.1007/s40520-022-02130-y PMID:

35451734

PLOS ONE Prediction of VO2peak using cardiorespiratory parameters from warm-up and submaximal stage of treadmill CPET

PLOS ONE | https://doi.org/10.1371/journal.pone.0291706 January 10, 2024 17 / 19

https://doi.org/10.3109/09638288.2012.759629
http://www.ncbi.nlm.nih.gov/pubmed/23600709
https://doi.org/10.7554/eLife.86291
http://www.ncbi.nlm.nih.gov/pubmed/37162318
https://doi.org/10.1152/japplphysiol.00148.2023
https://doi.org/10.1152/japplphysiol.00148.2023
http://www.ncbi.nlm.nih.gov/pubmed/37199779
https://doi.org/10.1093/ehjci/jead119.244
https://doi.org/10.1093/ehjci/jead119.244
https://doi.org/10.1371/journal.pone.0229466
http://www.ncbi.nlm.nih.gov/pubmed/32163443
https://doi.org/10.1038/s41746-021-00531-3
https://doi.org/10.1038/s41746-021-00531-3
http://www.ncbi.nlm.nih.gov/pubmed/34764446
https://doi.org/10.3389/fphys.2022.897412
http://www.ncbi.nlm.nih.gov/pubmed/36105296
https://physionet.org/content/treadmill-exercise-cardioresp/1.0.1/
https://physionet.org/content/treadmill-exercise-cardioresp/1.0.1/
https://doi.org/10.2165/11319670-000000000-00000
https://doi.org/10.2165/11319670-000000000-00000
http://www.ncbi.nlm.nih.gov/pubmed/20092364
http://www.ncbi.nlm.nih.gov/pubmed/10911416
https://doi.org/10.1186/s40798-023-00564-w
http://www.ncbi.nlm.nih.gov/pubmed/36964427
https://doi.org/10.1371/journal.pone.0283630
https://doi.org/10.1371/journal.pone.0283630
http://www.ncbi.nlm.nih.gov/pubmed/37146031
http://keras.io
https://doi.org/10.1186/s40635-022-00461-8
https://doi.org/10.1186/s40635-022-00461-8
http://www.ncbi.nlm.nih.gov/pubmed/36008625
https://doi.org/10.1007/s40520-022-02130-y
http://www.ncbi.nlm.nih.gov/pubmed/35451734
https://doi.org/10.1371/journal.pone.0291706


45. Izquierdo MC, Lopes S, Teixeira M, Polónia J, Alves AJ, Mesquita-Bastos J, et al. The Chester step test

is a valid tool to assess cardiorespiratory fitness in adults with hypertension: reducing the gap between

clinical practice and fitness assessments. Vol. 42, Hypertension Research. 2019. https://doi.org/10.

1038/s41440-019-0316-5 PMID: 31451720

46. Garcia-Tabar I, Iturricastillo A, Castellano J, Cadore EL, Izquierdo M, Setuain I. Predicting Cardiorespi-

ratory Fitness in Female Soccer Players: The Basque Female Football Cohort Study. Int J Sports Phy-

siol Perform. 2022;17(1).
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