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Abstract: Background/Objectives: This study aimed to evaluate the accuracy of machine learning
(ML) techniques in classifying pediatric individuals—cardiological patients, healthy participants,
and athletes—based on cardiorespiratory features from short-term static measurements. It also exam-
ined the impact of cardiorespiratory coupling (CRC)-related features (from causal and information
domains) on the modeling accuracy to identify a preferred cardiorespiratory feature set that could
be further explored for specialized tasks, such as monitoring training progress or diagnosing health
conditions. Methods: We utilized six self-prepared datasets that comprised various subsets of car-
diorespiratory parameters and applied several ML algorithms to classify subjects into three distinct
groups. This research also leveraged explainable artificial intelligence (XAI) techniques to interpret
model decisions and investigate feature importance. Results: The highest accuracy, over 89%, was
obtained using the dataset that included most important demographic, cardiac, respiratory, and
interrelated (causal and information) domain features. The dataset that comprised the most influential
features but without demographic data yielded the second best accuracy, equal to 85%. Incorporation
of the causal and information domain features significantly improved the classification accuracy. The
use of XAI tools further highlighted the importance of these features with respect to each individual
group. Conclusions: The integration of ML algorithms with a broad spectrum of cardiorespiratory
features provided satisfactory efficiency in classifying pediatric individuals into groups according
to their actual health status. This study underscored the potential of ML and XAI in advancing the
analysis of cardiorespiratory signals and emphasized the importance of CRC-related features. The
established set of features that appeared optimal for the classification of pediatric patients should be
further explored for their potential in assessing individual progress through training or rehabilitation.

Keywords: cardiorespiratory parameters; machine learning; causality; XAI; cardiorespiratory
coupling; health status

1. Introduction

The assessment of cardiovascular function in ambulatory or field conditions (e.g., during
physical training, athletic monitoring, or routine primary care visits) has predominantly
relied on electrocardiography (ECG), a non-invasive measurement of the electrical activity
of the heart. The intervals between the consecutive R peaks from a QRS complex detected
from ECG recordings can be used to calculate the heart rate variability (HRV) parameters in
the time, frequency, and nonlinear domains, which constitute valuable markers in various
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health conditions [1–4]. Importantly, many studies emphasized the value of incorporating
respiratory data, such as the respiratory rate (RespRate), tidal volume (TV), and pulmonary
ventilation, to enhance the clinical relevance of HRV analysis [2,5–7]. Moreover, respiration
acts as a confounder for cardiovascular and cerebrovascular controls [8] and is necessary
for the assessment of the baroreflex role [9]. Recently, there has been a growing interest in
introducing new cardiorespiratory parameters, which could benefit from the diagnostic
information hidden in the interdependence and cooperation of cardiac and respiratory
systems [10]. This linkage is known as cardiorespiratory coupling (CRC), which is reflected
in phenomena like respiratory sinus arrhythmia (RSA) or baroreceptor coupling [11]. These
interdependencies can be quantified based on the HRV associated with breathing [12]
or by using parameters from the causal or information domains, which simultaneously
utilize both cardiac and respiratory signals for such quantification [13–16]. The causal
analysis of cardiorespiratory signals, mostly based on the Granger causality (GC), allows
for the identification and quantification of directional influences between the cardiac
and respiratory systems. By analyzing the temporal sequence of events, the GC can
determine whether changes in one system can improve the prediction of changes in the
other, providing insight into the interplay between both heart and lung functions. When
testing the causal influence, e.g., from the respiratory signal to the tachogram (denotated
as Resp→RR), with this method, two autoregressive models are created. The first model
predicts the current value of the tachogram based on the p defined number of past values
of this signal (Equation (1)), while the second model predicts the same current value of
the tachogram but based on the past values of the cardiological and respiratory signals
(Equation (2)):

RR(t) =
p

∑
i=1

AiRR(t − i) + ε1 (1)

RR(t) =
p

∑
i=1

BiRR(t − i) +
p

∑
i=1

CiResp(t − i) + ε2 (2)

Then, the measure of the causality Resp→RR can be defined as the logarithm of the
ratio of the variances of the models’ residuals ε1 and ε2, as shown in Equation (3) [17]:

GCResp→RR = ln
σ2ε1

σ2ε2
(3)

While traditional GC relies on linear modeling, more sophisticated nonlinear ap-
proaches were also developed to enable the analysis of more complex relationships [18–20].
The information domain quantification of the interdependencies between signals is mostly
based on the entropy parameters [21,22]. Both causal- and information-based parameters
are commonly applied to detect direct and indirect couplings in time series; thus, they are
also useful for CRC quantification [14,23,24]. Notwithstanding, there is a lack of literature
on the possible descriptive and diagnostic utility of such parameters.

As computational power increases and more cardiorespiratory parameters become
available, the use of machine learning (ML) tools for biomedical data analysis becomes
more popular [25]. This trend is advancing the fields of precision and individualized
medicine [26,27]. ML algorithms and wearable devices play a crucial role in these contexts,
enabling continuous monitoring of physiological signals and advanced analysis of data to
support tailored interventions [28,29]. Personalized information about a subject’s health
status, based on cardiorespiratory data, can be presented either as a continuous parameter
(corresponding to a regression problem in ML) or as discrete labels (through ML classi-
fication). To achieve precise personalization, it is essential to identify the physiological
parameters that most accurately reflect an individual’s health condition and enable dif-
ferentiation between various health statuses. Determining these key parameters enables
further tailoring of ML models for personalized insights, preferably based on data gathered
from wearable devices. Such insights enable clinicians and coaches to customize inter-
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ventions effectively and monitor progress with greater precision. Thus, determining the
most relevant features from a broad range of cardiorespiratory data is a critical first step in
enhancing diagnostic accuracy and improving individualized care. Despite ML models
achieving human-level performance across various tasks, their perception as inscrutable
“black boxes” greatly limits the understanding of their decision-making foundations, thus
undermining their broader acceptance and application in medicine [30]. To address this
issue, the use of explainable artificial intelligence (XAI) techniques has gained popularity.
These methodologies play a crucial role in enhancing the interpretability and trustwor-
thiness of ML models, thereby elevating their utility within professional settings. This
progress is crucial in bridging the gap between complex ML algorithms and real-world
applications, ensuring that their integration into various domains is both effective and
ethically responsible [31].

With the growing emphasis on personalized medicine, there is an increasing demand
for individualized assessments of health status to optimize treatment, rehabilitation, work-
outs, and intervention strategies [32–34]. For instance, CRC was recently used to determine
the optimal breathing training frequency [35]. Individualized approaches are particularly
important in pediatric populations, where only 40% of youth are currently believed to
have an optimal cardiorespiratory fitness (CRF) level, a crucial marker of physical and
mental health, as well as academic achievement [36]. Furthermore, assessing one’s health
status in terms of CRF and muscular fitness is essential for young individuals, as both
are positively associated with health-related quality of life, particularly in the physical,
psychological, and social domains in this population [37]. Moreover, higher CRF during
childhood and adolescence is associated with better cardiometabolic health parameters
later in life, emphasizing the long-term benefits of early interventions targeting CRF [38].
These factors highlight the importance of individualized assessments of health status in
pediatric populations. In this study, we made an effort to explore the capabilities of ML in
classifying the health statuses of pediatric subjects from three distinct groups. This allowed
for the identification of an optimal set of cardiorespiratory features and lay the groundwork
for further personalized modeling.

This study aimed to evaluate the accuracy of ML techniques in classifying pediatric in-
dividuals with respect to their health status—including patients with heart disease, healthy
participants, and trained athletes—based on cardiorespiratory features calculated from
short-term measurements taken under static conditions. Additionally, this study investi-
gated the importance of CRC-related features by examining their influence on modeling
accuracy, hypothesizing that these features capture unique physiological interactions be-
tween cardiac and respiratory systems, thereby introducing additional information about
the subject’s health status and improving the performance of machine learning models.
Moreover, this evaluation was performed to establish a preferred set of features that could
be used for further development in more specialized classification or regression tasks
related to assessing individual progress through training or rehabilitation or diagnosing
specific health conditions.

2. Materials and Methods
2.1. Study Design

The inclusion criteria for this study were ages between 6 and 18 years old and given
written informed consent, while the exclusion criteria were signs of infection and diagnosed
additional disorders that may affect the functioning of the autonomic nervous system.
Subjects were assigned to three distinct groups (which also served as labels for the ML
classification) according to their health status based on the following criteria:

• Cardiac—subjects with an ongoing cardiac disease requiring hospitalization;
• Healthy—subjects without any active heart disease, whether sedentary or recreation-

ally active subjects according to McKay classification [39];
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• Sport—trained adolescent athletes [39,40] (soccer players) affiliated with a sports club,
with at least 3 years of training experience and regularly training ∼3 times per week
with a purpose to compete.

For the cardiorespiratory data acquisition, all participants took part in ECG and
impedance pneumography (IP) recordings performed for at least 5 min at rest in the
supine position using the Pneumonitor device. This apparatus is a recently developed
and validated device for cardiorespiratory monitoring that allows for the simultaneous
acquisition of these two signals [41–44]. In the IP method, a small electrical current below
the tissue excitability threshold is applied through the application electrodes, and the
voltage response is measured across the same or an additional pair of electrodes (receiving
electrodes). As a person breathes, the air volume in the lungs changes, causing variations
in the impedance within the chest, which are measured by the IP technique.

A tetrapolar measurement using a sinusoidal current with an amplitude of up to 1 mA
and a frequency of 100 kHz, along with electrode placement configured according to [45],
was applied. Based on the findings in [46], it was presumed that such conditions allow for
linear fitting to optimally align the IP with direct breathing measurements, e.g., using a
facemask or nose cannula. Consequently, this alignment permits the IP signal to be treated
as an equivalent to the relative TV. The placement of the electrodes used for the ECG and
IP is presented in Figure 1.
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Figure 1. Placement of the electrodes used for the ECG and IP measurements.

In terms of ML, the modeling parameters derived from the cardiorespiratory recordings
served as the model inputs and information about the group assignment was used as the
output. This study was approved by two ethics committees (permissions: KB/55/N02/2019,
5 June 2019 and KB/70/2021, 14 June 2021) and conducted in accordance with the Declara-
tion of Helsinki. Written informed consent forms were obtained from the legal guardians
of subjects younger than 16 years old and directly from the subjects themselves if they were
16 years or older.

2.2. Signal Processing

Both the ECG and IP were acquired with a 250 Hz sampling frequency. The raw
IP signal was filtered with a bandpass filter with cutoff frequencies of 0.05 and 0.67 Hz,
corresponding to 3 and 40 breaths per minute, respectively; thus, the respiratory signal
(Resp) was obtained. RR intervals (RRi) were extracted from the ECG signal using automatic
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detection, followed by manual correction by an experienced physician. The stationarity of
the original RRi series was confirmed using the Phillips–Perron test. Such obtained series of
RRi were interpolated using cubic interpolation in order to obtain a tachogram time series
(RR) with the same sampling as the respiratory signal (which enabled estimating causal
and information domain features based on the signals, not only beat-by-beat sequences).
Both signals were then down-sampled to 25 Hz to reduce the computational complexity
(only for the calculation of a subset of causal and information domain features). Examples
of the obtained signals are presented in Figure 2.
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2.3. Parameters Calculation

Three types of cardiorespiratory parameters were calculated: HRV (time and frequency
domains and nonlinear), respiratory parameters, and parameters from causal and informa-
tion domains. HRV parameters were calculated using the Neurokit2 package [47], extended
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with parameters from symbolic dynamics analysis [48]. From the respiratory signal, statisti-
cal characteristics, such as the RespRate, relative TV (indexed by the median TV due to the
lack of calibration and the inability to convert the measured impedance signal directly into
milliliters), and the inspiration/expiration time ratio, were derived. In terms of the causal
relationships between cardiac and respiratory signals, features were calculated using the
GC [49], the nonlincausality package with various ML models applied [18,50], the kernel
GC [20], and the large-scale nonlinear Granger causality (lsNGC) [19]. Parameters for
the information domain were mostly based on entropy analysis, but also simple statistics,
like the highest Pearson correlation coefficient between the signals for a time lag between
−1 and 1 s. The full list of features and their descriptions is presented in Appendix A, while
the code used for their calculation is available in the repository [51]. As a result, for each pa-
tient, a total of 157 features were calculated, including 5 demographic (age, weight, height,
sex, and body mass index), 102 cardiac, 18 respiratory, and 32 causal/information features.

2.4. Modeling

Based on the aforementioned parameters, four datasets (described further using
the prefix D) utilized as input for machine learning modeling were created according to
different types of features. Dataset D1 included demographic and cardiological features.
Dataset D2 contained the same features as D1, with the addition of respiratory features.
Dataset D3 expanded further by incorporating causal and information domain features.
Finally, dataset D4 consisted of cardiological, respiratory, causal, and information domain
features, excluding demographic data. The dataset components are presented in Table 1.

Table 1. Description of the content of each dataset based on the type of features, where “+” indicates
that the given features are included in the respective dataset.

Dataset Demographic Data Cardiological Features Respiratory Features Causal and Information
Domain Features

D1 + +
D2 + + +
D3 + + + +
D4 + + +

Moreover, two more datasets, D5 and D6, were created based on the 35 most influential
features determined based on the Shapley values from datasets D3 and D4, respectively, in
order to simplify the ML models, potentially further increase their accuracy, and evaluate
the approach using features that most accurately reflected an individual’s health condition,
making them preferable for future studies. Features for each patient were labeled according
to their assigned group (Cardiac/Healthy/Sport). For the classification, various popular
machine learning algorithms were utilized, including Logistic Regression (also with Ridge
and Lasso regularization), Decision Tree, Support Vector Machine, Random Forest, Gra-
dient Boosting, Naïve Bayes, K-Nearest Neighbors, AdaBoost, XGBoost, and multilayer
perceptron. Hyperparameter optimization was applied for each algorithm. To validate
the classification, 10-fold cross-validation was performed. In this method the dataset was
randomly divided into 10 equal-sized subsets called folds. The ML model was trained on
nine of these folds and tested on the remaining fold. This process was repeated 10 times,
each time using a different fold as the test set and the remaining folds for training. The final
model performance was then calculated as the average of the results from all 10 iterations,
providing a more robust estimate of the model’s performance by reducing the variance
associated with random sampling of the data into training and test sets.
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The following metrics were calculated: accuracy, precision, recall, F1 score, Mathew’s
correlation coefficient (MCC), and area under the curve (AUC) for each iteration on the test
set according to Equations (4)–(8):

Accuracy =
1
n

n

∑
i=1

1(ŷi = yi), (4)

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F1score =
T2 ∗ TP

2 ∗ TP + FN + FP
, (7)

MCC =
n ∗ ∑n

i=1 1(ŷi = yi)− ∑K
k pk ∗ tk√(

n2 − ∑K
k p2

k

)
∗
(

n2 − ∑K
k t2

k

) (8)

where 1(x) is the indicator function, n is the number of samples, TP is true positive, FP is
false positive, FN is false negative, pk is the number of times class k was predicted, and tk
is the number of times class k truly occurred.

The mean values of the metrics from the cross-validation were treated as a final eval-
uation of the algorithm. The confusion matrix and receiver operating curve (ROC) were
also visualized. In order to increase the training dataset and to handle class imbalance, up-
sampling using the synthetic minority oversampling technique (SMOTE) [52] was applied
to the training set at each iteration of the validation. The code used for the modeling is
presented in [51]. For each dataset, the best algorithm was determined based on the highest
accuracy value, whose results were taken for further analysis. The metrics from individual
iterations of cross-validation were compared between datasets using the pairwise Wilcoxon
signed-rank test to determine whether the inclusion of certain feature types improved the
classification performance. The assumed level of significance was 0.05. The analysis was
performed using Python 3.10.8. A full diagram of the performed analysis is presented in
Figure 3.

2.5. Explainable AI

To study the significance of the different features in the machine learning models, tools
for XAI were utilized for the four datasets that obtained the best results in terms of accuracy.
The Dalex Python package was used to assess which features were the most important
for the model’s decisions using a permutation-based variable importance analysis [53].
Additionally, Shapley values were applied to understand how each feature influenced the
individual predictions, which helped to explain the model’s behavior in more detail for
individual subjects [54]. During each iteration of the cross-validation, the Shapley values
and variable importance were determined based on 30 permutation rounds, using 1-AUC
as the loss function for the test set. Following the complete cross-validation process, all the
Shapley values for each data point and feature were collated and visualized, along with the
average importance values of the variables.
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3. Results

A total of 135 subjects (97 male and 38 female) were included in this study. The descrip-
tive statistics of all groups are presented in Table 2. The Cardiac group consisted of patients
with the following conditions: congenital heart defect (17), cardiomyopathy/myocarditis
(8), and arrhythmia (7). The Sport group consisted of individuals with an average training
experience of 5.82 ± 1.19 years (range 3–10 years) and a mean maximal oxygen uptake of
46.55 ± 4.42 mL/kg/min (range 39.4–57.9 mL/kg/min). The distributions of age, body
mass, height, and body mass index (BMI) are presented in Figure 4. The demographic
parameters of the participants were compared using the Kruskal–Wallis test, as the data
did not follow a normal distribution. Although this test indicated statistically significant
differences between the groups in terms of these parameters, they were widely overlapping.
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Assigning each individual subject to a given group based on any individual parameter was
not possible; thus, advance machine learning modeling was utilized.

Table 2. Descriptive statistics of all three study groups and the overall study population. Values are
presented as the mean ± standard deviation and the range of the parameter in brackets.

Cardiac Healthy Sport Overall

N 29 62 44 135
Male/female 20/9 33/29 44/0 97/38

Age 13.1 ± 3.5 (6–17) 11.0 ± 2.2 (7–15) 13.3 ± 1.4 (10–15) 12.2 ± 2.6 (6–17)

Body mass [kg] 57.1 ± 21.0
(23.0–95.0)

43.5 ± 12.1
(21.4–75.6)

57.2 ± 13.6
(30.0–81.8)

50.9 ± 16.4
(21.4–95.0)

Height [cm] 160.4 ± 17.2
(123–184)

151.2 ± 13.1
(123–183)

169.4 ± 12.7
(135–190)

159.1 ± 16.0
(123–190)

HR [beats/min] 72.8 ± 13.3
(56.0–100.5)

79.4 ± 10.2
(60.7–100.5)

76.9 ± 15.0
(46.7–121.4)

77.2 ± 12.8
(46.7–121.4)

RMSSD [ms] 55.3 ± 36.8
(9.4–140.7)

61.8 ± 34.4
(13.0–162.3)

68.2 ± 46.7
(5.6–178.9)

62.5 ± 39.6
(5.6–178.9)

RespRate [breaths/min] 18.5 ± 4.6 (7.9–25.4) 18.8 ± 3.5 (10.7–28.5) 17.1 ± 3.5 (10.2–25.8) 18.2 ± 3.8 (7.9–28.5)
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The metrics obtained for the best algorithm for each dataset alongside the upsampling
proportions are presented in Table 3. The best results in terms of all metrics with accu-
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racy equal to 89.1% were obtained for the fifth dataset, which incorporated demographic,
cardiac, respiratory, causal, and information domain features while using the Gradient
Boosting model. The selection of the most important features resulted in an improvement
in the performance, as all the metrics for D5 and D6 were superior compared with the cor-
responding D3 and D4, respectively. Dataset D6, which did not leverage the demographic
data, had an accuracy of 85.3% with the usage of the Gradient Boosting model. The violin
plots of the metrics obtained during individual iterations of the 10-fold cross-validation are
presented in Figure 5. Datasets D3 to D6 generally showed better performances across most
metrics, with D5 typically demonstrating the best overall results. D1 and D2 had lower
median values and wider distributions of metrics, indicating poorer and less consistent
performance. The pairwise comparison of the obtain metrics between datasets using the
Wilcoxon signed-rank test after cross-validation are presented in Figure 6. There was no
statistical difference between the metrics for datasets D1 and D2, while all the other datasets
had significantly better results than these two (despite the AUC for D4 compared with D2).
Moreover, D4 had a significantly smaller AUC compared with D3, D5, and D6. There was
also a significant difference in terms of the precision and F1 score between D4 and D6. The
use of the limited datasets with the 35 most important features improved the performance,
although not statistically significantly.
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Table 3. Mean ± standard deviation of metrics obtained from the 10-fold cross-validation for the
given ML algorithm with the applied SMOTE upsampling technique with the strategy presented as a
number of Cardiac/Healthy/Sport training samples.

D1 D2 D3 D4 D5 D6

Accuracy [%] 68.3 ± 8.1 72.0 ± 8.7 86.7 ± 8.4 83.1 ± 11.5 89.1 ± 9.6 85.3 ± 10.0
AUC 83.2 ± 6.7 85.2 ± 6.5 94.2 ± 5.2 90.1 ± 8.3 95.8 ± 5.7 94.1 ± 5.7

Recall [%] 67.6 ± 9.6 68.1 ± 10.9 85.1 ± 9.6 81.6 ± 11.2 88.9 ± 10.2 84.0 ± 9.9
Precision [%] 66.9 ± 12.7 70.8 ± 13.0 89.5 ± 8.6 85.6 ± 11.3 89.6 ± 11.1 86.9 ± 10.6

MCC 0.516 ± 0.132 0.566 ± 0.140 0.801 ± 0.133 0.742 ± 0.180 0.835 ± 0.151 0.778 ± 0.152
F1 score 0.659 ± 0.109 0.676 ± 0.114 0.856 ± 0.095 0.823 ± 0.111 0.885 ± 0.109 0.843 ± 0.102

ML algorithm XGBoost
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Gradient
Boosting

Gradient
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Gradient
Boosting

Gradient
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Figure 6. p-values from the Wilcoxon signed-rank test that compared the metrics obtained for individ-
ual datasets from individual iterations of 10-fold cross-validation. p-values smaller than 0.05, indicat-
ing statistically significant difference in the metric values, are highlighted with black backgrounds.

The ROC obtained on all predicted values on test sets are presented in Figure 7 for
each group based on a one vs. all approach. The cumulative confusion matrices obtained
for each dataset after the validation based on the test sets are presented in Figure 8.
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Figure 8. Cumulative confusion matrices obtained by summing the confusion matrices from the test
set in each iteration of the 10-fold cross-validation for each considered dataset.

The results of the XAI analysis in terms of the Shapley values (presenting the contri-
bution of each feature to the model’s predictions for individual samples) for datasets D3
and D4 (which contained all cardiorespiratory features) are presented in Figure 9, while
D5 and D6 (which contained the most important features) are presented in Figure 10.
Permutation-based variable importance (presenting the overall impact of each feature on
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the model’s performance) is visualized in Figure 11 for D3 and D4 and in Figure 12 for
D5 and D6. For four analyzed datasets, some of the most influential features based on
the Shapley values were as follows: the ratio of the GC from the respiratory signal to the
tachogram (Resp→RR) by the GC from the tachogram to the respiratory signal (RR→Resp),
the highest values of the Pearson correlation coefficient between the respiratory and cardiac
signals for a lag between −1 and 1 s (CorrCoef), lsNGC RR→Resp, and GC RR→Resp.
These features were also indicated as the most influential in the permutation-based variable
importance analysis for distinguishing between the individuals from the Healthy and Sport
groups (besides CorrCoef for dataset D5). In terms of distinguishing between the Cardiac
and other groups, this analysis revealed that the CorrCoef and lsNGC RR→Resp features
had the biggest impacts.
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Figure 9. Shapley values obtained for the test data from the cross-validation for D3 (on the left) and
D4 (on the right). The horizontal axis represents the SHAP value, which reflects the impact of each
feature on the model’s output. The vertical axis lists the features in order of importance, with the
most influential features at the top. The color of each dot represents the feature value for each data
point: red dots correspond to high feature values, while blue dots correspond to low feature values.
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Figure 10. Shapley values obtained for the test data from the cross-validation for D5 (on the left) and 
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Figure 10. Shapley values obtained for the test data from the cross-validation for D5 (on the left) and
D6 (on the right). The horizontal axis represents the SHAP value, which reflects the impact of each
feature on the model’s output. The vertical axis lists the features in order of importance, with the
most influential features at the top. The color of each dot represents the feature value for each data
point: red dots correspond to high feature values, while blue dots correspond to low feature values.
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Figure 11. The mean values of dropout-loss variable importance are presented as bar plots with the 
standard deviation (red solid lines) for each class separately with a one vs. all approach applied for 
its calculations. The mean and standard deviation were calculated from the values of variable im-
portance obtained at each iteration of the 10-fold cross-validation. The results for D3 are presented 
on the left and for D4 on the right. 

Figure 11. The mean values of dropout-loss variable importance are presented as bar plots with the
standard deviation (red solid lines) for each class separately with a one vs. all approach applied
for its calculations. The mean and standard deviation were calculated from the values of variable
importance obtained at each iteration of the 10-fold cross-validation. The results for D3 are presented
on the left and for D4 on the right.
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Figure 12. The mean values of the dropout-loss variable importance are presented as bar plots with
the standard deviation (red solid lines) for each class separately with a one vs. all approach applied
for its calculations. The mean and standard deviation were calculated from the values of variable
importance obtained at each iteration of the 10-fold cross-validation. The results for D5 are presented
on the left and for D6 on the right.

4. Discussion

We present the classification of young individuals into three distinct groups (Cardiac,
Healthy, and Sport) based on cardiorespiratory parameters obtained from 5 min (rest,
supine) measurements during spontaneous breathing using ML algorithms. The findings
suggest that the integration of diverse cardiorespiratory parameters, including cardiac,
respiratory, and causal/information domain features, significantly improved the accuracy
and robustness of classification performance. Dataset D5, which incorporated the most
influential parameters from all feature types, demonstrated superior performance across
various metrics, including accuracy, recall, precision, AUC, MCC, and F1 score, as well as
in terms of the shape of the ROC curves. The results obtained for D6 were similar in terms
of most metrics, while it did not leverage the demographic information.

The high accuracy and other favorable metrics observed in the D5 dataset highlight
the effectiveness of this approach in distinguishing between physiological profiles within
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classified groups. Moreover, in the case of misclassification, the Sport subjects were more
often labeled as Healthy rather than Cardiac, and the Cardiac patients were more frequently
mislabeled as Healthy rather than Sport subjects. This suggests a greater difference be-
tween the Cardiac and Sport groups in the feature space, with the Healthy group being
somewhere in between, likely closer to the Sport group, as the Healthy subjects were
mostly misclassified as Sport individuals. As also suggested in the previous work [55], the
inclusion of causal and information domain features significantly improved the predictive
models. The imperfect separation of the groups might have been due to changes in the
cardiac and respiratory parameters that varied not only with the health status but also with
age [56], which made it harder to distinguish the subjects between groups. Additionally,
the heterogeneity of health issues in the Cardiac group could also negatively impact the
accuracy, as different issues might be characterized by distinct cardiorespiratory profiles.

The observed improvement of classification for datasets containing causal and infor-
mation features seems to support the initial hypothesis that cardiorespiratory interdepen-
dencies provide valuable diagnostic insights. This may be attributed to the additional
information about the health status provided by the CRC, particularly the RSA phenomenon
in which the change in the heart rate is caused by breathing with shortening of the RRi
during the inhale and extension during the exhale [57]. Based on the HRV, information
about the influence (in the causal sense) of respiration on the cardiac system might be
obtained (primarily through frequency domain parameters) [58], although only taking into
account the respiratory signal allowed for the full picture of the RSA to be captured. Exist-
ing literature seems to support the claim regarding the relevance of information related to
CRC, as studies demonstrated that CRC plays an important role in sports medicine [10,59],
e.g., allowing for differentiation between athletes and non-athletes [60], as an early marker
of cardiac autonomic dysfunction in type 2 diabetes mellitus patients [61] and in research
on obstructive sleep apnea [62,63].

The implementation of XAI tools confirmed that the inclusion of causal features was
beneficial for the prediction accuracy, as some of them had a meaningful impact on the
model output, both in terms of the Shapley values and permutation-based variable im-
portance. Features related to RR→Resp causality had a bigger impact on the model than
Resp→RR, which might seem contradictory to the RSA, which may be explained by the
fact that the local maxima of the tachogram might occur before the local maxima of the
respiratory signal [13,64], as well as physiological bidirectional character of interdepen-
dencies between the RR and TV signals [65]. This observation highlights the importance
of interpreting causal and information domain features in the context of the underlying
data and with respect to the domain knowledge. It is also noteworthy that, although the
most influential causal domain features tended to be related to the traditional GC, nonlin-
ear approaches, like lsNGC, were also among the most important parameters, indicating
the complexity of the CRC phenomenon. The greater impact of linear features may be
attributed to the static measurement conditions without introducing any interventions
that could further emphasize the nonlinear relationships. It is also worth mentioning
that despite the strong influence of demographic parameters on the model output and
their statistical difference between the groups, dataset D6 provided satisfying results that
reached over 85% accuracy based solely on features calculated from the cardiorespiratory
signals without any information about the subjects’ demography. This allowed for the
utilization of the method without the need for additional measurements of weight and
height or knowledge about the subject’s age.

The utilization of ML algorithms with cardiorespiratory data in cardiology, pul-
monology, and sports medicine has gained popularity in recent years [52,63–66]. The
application of ML algorithms has been found useful in terms of coronary heart disease
risk prediction [66], classifying exercise limitation severity [67], identifying integrative car-
diopulmonary exercise test (CPET) profiles [68], the prediction of CRF in terms of the peak
oxygen consumption [55], and central apnea detection in premature infants [69]. Despite
the widespread application of ML in medicine, the integration of CRC-related features
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remains underexplored, with only a minority of studies incorporating these features [69].
In this study, we demonstrated that CRC-related features significantly improved the per-
formance of the models, highlighting a gap in the literature and presenting a valuable
opportunity for future research to further explore the role of CRC in various clinical and
athletic contexts, as well as its impact on predictive modeling performance.

Moreover, the presented results demonstrate the potential of leveraging the ML-
assisted evaluation of the health status based on static cardiorespiratory recordings. Such
evaluation, which can be widely accessible due to the simplicity of the measurement
process; the lack of need for advanced apparatus, like gas analyzers; and the absence of
contraindications (as in the case of CPET [70]), is particularly valuable in areas such as pedi-
atric heart transplantation [71], assessment of cardiovascular disease risk in adulthood [72],
the monitoring of the cardiac rehabilitation progress [73], the timely identification of patho-
logical conditions prior to sports events [74], and optimizing the training load and avoid
overtraining [75]. Health status assessments are especially challenging in the pediatric
population due to changes in cardiac and respiratory functions during maturation [76,77].
What is more, the interpretation of multiple cardiac, respiratory, and causal parameters
might be challenging for the physician due to their multitude. Therefore, ML tools can
simplify the data and provide an output in the form of a new, more interpretable parame-
ter. The improvement in ML performance observed for datasets that contained only the
35 most important features, compared with the corresponding datasets with all cardiorespi-
ratory features, although not statistically significant, highlighted the need for research into
identifying the optimal parameter set that would provide the highest diagnostic value.

Models developed in this study, although of the general purpose, could be potentially
useful for initial patient screening. Foremost, they could be further personalized and
specialized, e.g., based on systematically conducted measurements during training camps
or rehabilitation processes with the training/rehabilitation outcome as model targets. After
further development for the specific use case, the presented method, integrating various
easily accessible cardiorespiratory features and machine learning, would be especially
helpful in clinical practice by providing more personalized and precise health assessments.
Specifically, it could aid in cardiac rehabilitation by offering a non-invasive, monitoring
solution that leverages not only the typically used cardiological parameters (like linear HRV
ones), but a broad range of cardiorespiratory features, including nonlinear CRC parameters
and machine learning models to track patient progress through the rehabilitation process.
The method’s ability to classify individuals based on their cardiorespiratory signals could
also improve the early detection of potential health issues, enabling timely interventions
and more tailored rehabilitation strategies.

Additionally, its application could extend to optimizing training loads in athletes.
The ML-assisted parametrization of cardiorespiratory data based on the presented ap-
proach would allow coaches and sports physicians to closely monitor athletes’ adaptation
to training, ensuring they do not exceed their physiological limits and reducing the risk
of overtraining or injury. In broader healthcare contexts, this method could be applied
to monitor post-operative recovery, where the continuous, non-invasive tracking of car-
diorespiratory functions could help detect complications early, such as signs of respiratory
distress or cardiovascular instability. However, further studies and model training are
needed to optimize the method’s predictive power and ensure its accuracy and reliability
in those clinical applications.

The limitation of this study was the absence of female subjects in the Sport group, as
well as variations in the group sample sizes and demographic parameters, along with the
heterogeneity of health issues in the Cardiac group, all of which might have negatively im-
pacted the performance of the ML models. Including patients with arrhythmias could also
be seen as a potential limitation. These patients may experience paroxysmal arrhythmias,
and the cardiorespiratory parameters measured outside of an arrhythmia episode might
not differ significantly from those of healthy subjects. However, the condition itself could
indirectly impact the cardiorespiratory profile through lifestyle changes, such as avoiding
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physical exercise. A larger sample size with an equal distribution of demographic parame-
ters and increased within-group homogeneity would be beneficial from the perspective of
training the machine learning models. Moreover, the fact that subjects in the Sport group
only practiced a single sport discipline could also be considered a limitation.

As a result of this study, we not only trained classification models for multiple health
conditions that may be useful for initial patient screening but also highlighted the signifi-
cance of causal and information domain parameters related to CRC and identified a subset
of cardiorespiratory features that could be further explored. Our study demonstrated that
expanding the most commonly used HRV parameters with respiratory and CRC data could
lead to improved subject profiling. These findings have the potential to be leveraged in
predictive modeling to monitor parameter trends in individual progress during training or
rehabilitation, as well as in the context of CRF and specific cardiac conditions. However,
additional research is necessary to further explore these applications.

5. Conclusions

This study demonstrated the utilization of ML algorithms with a wide variety of
cardiorespiratory features in the classification of pediatric individuals into three groups
based on their health statuses while identifying the optimal set of cardiorespiratory features
with potential for further use in personalized medical modeling. The results also empha-
size the value of including causal and information domain features in the assessment of
individuals’ health statuses, as these features allowed for significant improvement of the
classification accuracy.
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Abbreviations
The following abbreviations are used in this manuscript:

AUC Area under the curve
BMI Body mass index
CRC Cardiorespiratory coupling
CRF Cardiorespiratory fitness
CPET Cardiopulmonary exercise test
ECG Electrocardiography
GC Granger causality
HRV Heart rate variability
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IP Impedance pneumography
lsNGC Large-scale nonlinear Granger causality
MCC Mathew’s correlation coefficient
ML Machine learning
Resp Respiratory signal
RespRate Respiratory rate
ROC Receiver operating curve
RR Tachogram time series
RRi RR intervals
RSA Respiratory sinus arrhythmia
SMOTE Synthetic minority oversampling technique
TV Tidal volume
XAI Explainable artificial intelligence

Appendix A

Full list of features used in this study and their descriptions [18–20,47–50,78–81].
Demography

• Sex
• Age
• Weight
• Height
• BMI: Body mass index

Cardiac

• MeanNN: The mean of the RR intervals.
• SDNN: The standard deviation of the RR intervals.
• SDANN1: The standard deviation of average RR intervals extracted from 1-min

segments of time series data.
• SDNNI1: The mean of the standard deviations of RR intervals extracted from 1-min

segments of time series data.
• RMSSD: The square root of the mean of the squared successive differences between

adjacent RR intervals.
• SDSD: The standard deviation of the successive differences between RR intervals.
• CVNN: The standard deviation of the RR intervals (SDNN) divided by the mean of

the RR intervals (MeanNN).
• CVSD: The root mean square of successive differences (RMSSD) divided by the mean

of the RR intervals (MeanNN).
• MedianNN: The median of the RR intervals.
• MadNN: The median absolute deviation of the RR intervals.
• MCVNN: The median absolute deviation of the RR intervals (MadNN) divided by the

median of the RR intervals (MedianNN).
• IQRNN: The interquartile range (IQR) of the RR intervals.
• SDRMSSD: SDNN/RMSSD, a time-domain equivalent for the low Frequency-to-High

Frequency (LF/HF) Ratio.
• Prc20NN: The 20th percentile of the RR intervals.
• Prc80NN: The 80th percentile of the RR intervals.
• pNN50: The proportion of RR intervals greater than 50 ms, out of the total number of

RR intervals.
• pNN20: The proportion of RR intervals greater than 20 ms, out of the total number of

RR intervals.
• MinNN: The minimum of the RR intervals.
• MaxNN: The maximum of the RR intervals.
• HTI: The HRV triangular index, measuring the total number of RR intervals divided

by the height of the RR intervals histogram.
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• TINN: The baseline width of the RR intervals distribution obtained by
triangular interpolation.

• VLF: The spectral power of very low frequencies (0.0033 to 0.04 Hz).
• LF: The spectral power of low frequencies (0.04 to 0.15 Hz).
• HF: The spectral power of high frequencies (0.15 to 0.4 Hz).
• VHF: The spectral power of very high frequencies (0.4 to 0.5 Hz).
• TP: The total spectral power.
• LFHF: The ratio obtained by dividing the low frequency power by the high

frequency power.
• LFn: The normalized low frequency, obtained by dividing the low frequency power

by the total power.
• HFn: The normalized high frequency, obtained by dividing the low frequency power

by the total power.
• LnHF: The log transformed HF.
• SD1: Standard deviation perpendicular to the line of identity.
• SD2: Standard deviation along the identity line. Index of long-term HRV changes.
• SD1SD2: ratio of SD1 to SD2.
• S: Area of ellipse described by SD1 and SD2 (pi * SD1 * SD2).
• CSI: The Cardiac Sympathetic Index calculated by dividing the longitudinal variability

of the Poincaré plot (4*SD2) by its transverse variability (4*SD1).
• CVI: The Cardiac Vagal Index equal to the logarithm of the product of longitudinal

(4*SD2) and transverse variability (4*SD1).
• CSI_Modified: The modified CSI obtained by dividing the square of the longitudinal

variability by its transverse variability.
• GI: Guzik’s Index.
• SI: Slope Index.
• AI: Area Index.
• PI: Porta’s Index.
• SD1d and SD1a: short-term variance of contributions of decelerations (prolongations

of RR intervals) and accelerations (shortenings of RR intervals), respectively.
• C1d and C1a: the contributions of heart rate decelerations and accelerations to short-

term HRV, respectively.
• SD2d and SD2a: long-term variance of contributions of decelerations (prolongations

of RR intervals) and accelerations (shortenings of RR intervals), respectively.
• C2d and C2a: the contributions of heart rate decelerations and accelerations to long-

term HRV, respectively.
• SDNNd and SDNNa: total variance of contributions of decelerations (prolongations

of RR intervals) and accelerations (shortenings of RR intervals), respectively.
• Cd and Ca: the total contributions of heart rate decelerations and accelerations to HRV.
• PIP: Percentage of inflection points of the RR intervals series.
• IALS: Inverse of the average length of the acceleration/deceleration segments.
• PSS: Percentage of short segments.
• PAS: Percentage of NN intervals in alternation segments.
• DFA_alpha1: The monofractal detrended fluctuation analysis of the HR signal, corre-

sponding to short-term correlations.
• DFA_alpha2: The monofractal detrended fluctuation analysis of the HR signal, corre-

sponding to long-term correlations.
• MFDFA_alpha1_Width, MFDFA_alpha1_Peak, MFDFA_alpha1_Mean, MFDFA_alpha1_Max,

MFDFA_alpha1_Delta, MFDFA_alpha1_Asymmetry, MFDFA_alpha1_Fluctuation,
MFDFA_alpha1_Increment, MFDFA_alpha2_Width, MFDFA_alpha2_Peak,
MFDFA_alpha2_Mean, MFDFA_alpha2_Max, MFDFA_alpha2_Delta,
MFDFA_alpha2_Asymmetry, MFDFA_alpha2_Fluctuation, MFDFA_alpha2_Increment:
Indices related to the Multifractal Detrended Fluctuation Analysis.

• ApEn: Approximate entropy.
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• SampEn: Sample entropy.
• ShanEn: Shannon entropy.
• FuzzyEn: Fuzzy entropy.
• MSEn: Multiscale entropy.
• CMSEn: Composite Multiscale entropy.
• RCMSEn: Refined Composite Multiscale entropy.
• CD: Correlation Dimension.
• HFD: Higuchi’s Fractal Dimension.
• KFD: Katz’s Fractal Dimension.
• LZC: Lempel-Ziv Complexity.
• SymDynMaxMin_0V: Percentage of words in the Max–min method that fall into the

0V family, representing sequences where all three consecutive symbols are equal. This
method uses six levels of uniform quantization.

• SymDynMaxMin_1V: Percentage of words in the Max–min method that fall into the
1V family, which includes sequences with only one variation among three consecutive
symbols.

• SymDynMaxMin_2LV: Percentage of words in the Max–min method that fall into the
2LV family, representing sequences with two variations in the same direction, forming
an increasing or decreasing sequence.

• SymDynMaxMin_2UV: Percentage of words in the Max–min method that fall into the
2UV family, where symbols vary two times in opposite directions, forming a peak or
a valley.

• SymDynSigma_0V: Percentage of words in the σ method that fall into the 0V family.
The σ method uses three levels defined by the signal average and its variations shifted
up and down by a set factor.

• SymDynSigma_1V: Percentage of words in the σ method that fall into the 1V family.
• SymDynSigma_2LV: Percentage of words in the σ method that fall into the 2LV family.
• SymDynSigma_2UV: Percentage of words in the σ method that fall into the 2UV family.
• SymDynEqualPorba4_0V: Percentage of words using the Equal-probability method

with four quantization levels (q = 4) that fall into the 0V family.
• SymDynEqualPorba4_1V: Percentage of words using the Equal-probability method

with four quantization levels that fall into the 1V family.
• SymDynEqualPorba4_2LV: Percentage of words using the Equal-probability method

with four quantization levels that fall into the 2LV family.
• SymDynEqualPorba4_2UV: Percentage of words using the Equal-probability method

with four quantization levels that fall into the 2UV family.
• SymDynEqualPorba6_0V: Percentage of words using the Equal-probability method

with six quantization levels (q = 6) that fall into the 0V family.
• SymDynEqualPorba6_1V: Percentage of words using the Equal-probability method

with six quantization levels that fall into the 1V family.
• SymDynEqualPorba6_2LV: Percentage of words using the Equal-probability method

with six quantization levels that fall into the 2LV family.
• SymDynEqualPorba6_2UV: Percentage of words using the Equal-probability method

with six quantization levels that fall into the 2UV family.

Respiratory

• RespRate: respiratory rate.
• Std_inst_resp_rate: Standard deviation of instantaneous respiratory rate.
• Min_inst_resp_rate: minimal value of instantaneous respiratory rate.
• Max_inst_resp_rate: maximal value of instantaneous respiratory rate.
• Mean_insp_time: mean inspiration time.
• Min_insp_time: minimal inspiration time.
• Max_insp_time: maximal inspiration time.
• Std_insp_time: standard deviation of inspiration time.
• Mean_exp_time:mean expiration time.
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• Min_exp_time: minimal expiration time.
• Max_exp_time: maximal expiration time.
• Std_exp_time: standard deviation of expiration time.
• TV_std: standard deviation of tidal volume normalized by median tidal volume.
• TV_q25: 25th quantile of tidal volume normalized by median tidal volume.
• TV_q75: 75th quantile of tidal volume normalized by median tidal volume.
• TV_skew: skewness of tidal volume normalized by median tidal volume.
• TV_kurtosis: kurtosis of tidal volume normalized by median tidal volume.
• IE_ratio_mean: mean inspiration/expiration ratio.

Causal/Information

• GC_RR_Resp: Granger causality from tachogram to respiratory signal.
• GC_Resp_RR: Granger causality from respiratory signal to tachogram.
• STE_RR_Resp: Symbolic transfer entropy from tachogram to respiratory signal.
• STE_Resp_RR: Symbolic transfer entropy from respiratory signal to tachogram.
• Resp_RR_SVR: Granger causality from respiratory signal to tachogram calculated

using Support Vector Regression (SVR).
• RR_Resp_SVR: Granger causality from tachogram to respiratory signal calculated

using Support Vector Regression (SVR).
• Resp_RR_BayesianRidge: Granger causality from respiratory signal to tachogram

calculated using Bayesian Ridge Regression.
• KGC_Resp_RR: Granger causality from respiratory signal to tachogram calculated

using Kernel Granger Causality (KGC).
• KGC_RR_Resp: Granger causality from Tachogram to respiratory signal calculated

using Kernel Granger Causality (KGC).
• RR_Resp_GradientBoostingRegressor: Granger causality from tachogram to respira-

tory signal calculated using Gradient Boosting Regressor.
• Resp_RR_GradientBoostingRegressor: Granger causality from respiratory signal to

tachogram calculated using Gradient Boosting Regressor.
• RR_Resp_TheilSenRegressor: Granger causality from tachogram to respiratory signal

calculated using Theil-Sen Regressor.
• Resp_RR_TheilSenRegressor: Granger causality from respiratory signal to tachogram

calculated using Theil-Sen Regressor.
• RR_Resp_ARDRegression: Granger causality from tachogram to respiratory signal

calculated using Automatic Relevance Determination (ARD) Regression.
• Resp_RR_ARDRegression: Granger causality from respiratory signal to tachogram

calculated using Automatic Relevance Determination (ARD) Regression.
• RR_Resp_RandomForestRegressor: Granger causality from tachogram to respiratory

signal calculated using Random Forest Regression.
• Resp_RR_RandomForestRegressor: Granger causality from respiratory signal to

tachogram calculated using Random Forest Regression.
• lsNGC_RR_Resp: Large scale-nonlinear Granger causality from tachogram to respira-

tory signal.
• lsNGC_Resp_RR: Large scale-nonlinear Granger causality from respiratory signal

to tachogram.
• Corr_coef: Highest values of the Pearson correlation coefficient between respiratory

and cardiac signals for lag between −1 and 1 s.
• Corr_lag: Value of the lag for which the highest Pearson correlation coefficient

was obtained.
• MI: Mutual information.
• AI: Active information.
• Block_En: Block entropy.
• Cond_En: Conditional entropy.
• En_rate: Entropy rate.
• Trans_En: Transfer entropy
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• Perm_En: Permutation entropy.
• KGC_ratio: ratio of KGC_Resp_RR and KGC_RR_Resp.
• GC_ratio: ratio of GC_Resp_RR and GC_RR_Resp.
• STE_ratiols: ratio of STE_Resp_RR and STE_RR_Resp.
• lsNGC_ratio: ratio of lsNGC_Resp_RR and lsNGC_RR_Resp.
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